Suppr超能文献

继续探讨活性氧在抗菌致死性中的作用。

Moving forward with reactive oxygen species involvement in antimicrobial lethality.

作者信息

Zhao Xilin, Hong Yuzhi, Drlica Karl

机构信息

Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, NJ 07103, USA Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, NJ 07103, USA State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China.

Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, NJ 07103, USA.

出版信息

J Antimicrob Chemother. 2015 Mar;70(3):639-42. doi: 10.1093/jac/dku463. Epub 2014 Nov 23.

Abstract

Support for the contribution of reactive oxygen species (ROS) to antimicrobial lethality has been refined and strengthened. Killing by diverse antimicrobials is enhanced by defects in genes that protect against ROS, inhibited by compounds that block hydroxyl radical accumulation, and is associated with surges in intracellular ROS. Moreover, support has emerged for a genetic pathway that controls the level of ROS. Since some antimicrobials kill in the absence of ROS, ROS must add to, rather than replace, known killing mechanisms. New work has addressed many of the questions concerning the specificity of dyes used to detect intracellular ROS and the specificity of perturbations that influence ROS surges. However, complexities associated with killing under anaerobic conditions remain to be resolved. Distinctions among primary lesion formation, resistance, direct lesion-mediated killing and a self-destructive stress response are discussed to facilitate efforts to potentiate ROS-mediated bacterial killing and improve antimicrobial efficacy.

摘要

活性氧(ROS)对抗菌杀伤力的作用得到了进一步完善和强化。多种抗菌剂的杀菌作用会因抗ROS基因的缺陷而增强,会因阻止羟基自由基积累的化合物而受到抑制,并且与细胞内ROS的激增有关。此外,已经出现了对控制ROS水平的遗传途径的支持。由于一些抗菌剂在没有ROS的情况下也能杀菌,因此ROS必定是补充而非取代已知的杀菌机制。新的研究解决了许多有关用于检测细胞内ROS的染料特异性以及影响ROS激增的干扰特异性的问题。然而,与厌氧条件下杀菌相关的复杂性仍有待解决。讨论了原发性损伤形成、抗性、直接损伤介导的杀伤和自毁性应激反应之间的区别,以促进增强ROS介导的细菌杀伤作用和提高抗菌效果的努力。

相似文献

1
Moving forward with reactive oxygen species involvement in antimicrobial lethality.
J Antimicrob Chemother. 2015 Mar;70(3):639-42. doi: 10.1093/jac/dku463. Epub 2014 Nov 23.
2
Ribosomal elongation factor 4 promotes cell death associated with lethal stress.
mBio. 2014 Dec 9;5(6):e01708. doi: 10.1128/mBio.01708-14.
3
Post-stress bacterial cell death mediated by reactive oxygen species.
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10064-10071. doi: 10.1073/pnas.1901730116. Epub 2019 Apr 4.
4
Reactive oxygen species and the bacterial response to lethal stress.
Curr Opin Microbiol. 2014 Oct;21:1-6. doi: 10.1016/j.mib.2014.06.008. Epub 2014 Jul 30.
5
The mechanism of ROS regulation of antibiotic resistance and antimicrobial lethality.
Yi Chuan. 2016 Oct 20;38(10):902-909. doi: 10.16288/j.yczz.16-157.
6
The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacteria.
Trends Microbiol. 2017 Jun;25(6):456-466. doi: 10.1016/j.tim.2016.12.008. Epub 2017 Jan 12.
7
The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review.
Chem Biol Interact. 2020 Apr 1;320:109023. doi: 10.1016/j.cbi.2020.109023. Epub 2020 Feb 22.
9
Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing.
Antimicrob Agents Chemother. 2016 Jul 22;60(8):5054-8. doi: 10.1128/AAC.03003-15. Print 2016 Aug.
10
Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants.
PLoS One. 2016 Apr 5;11(4):e0153023. doi: 10.1371/journal.pone.0153023. eCollection 2016.

引用本文的文献

1
Fast evolution of SOS-independent multi-drug resistance in bacteria.
Elife. 2025 Jul 9;13:RP95058. doi: 10.7554/eLife.95058.
3
The ability in managing reactive oxygen species affects persistence to ampicillin after nutrient shifts.
mSystems. 2024 Nov 19;9(11):e0129524. doi: 10.1128/msystems.01295-24. Epub 2024 Oct 29.
4
Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms.
Interdiscip Perspect Infect Dis. 2024 Mar 30;2024:9109041. doi: 10.1155/2024/9109041. eCollection 2024.
5
Enhancement of β-Lactam-Mediated Killing of Gram-Negative Bacteria by Lysine Hydrochloride.
Microbiol Spectr. 2023 Aug 17;11(4):e0119823. doi: 10.1128/spectrum.01198-23. Epub 2023 Jun 13.
6
Evaluation of the Combined Effect of Artemisinin and Ferroptosis Inducer RSL3 against .
Int J Mol Sci. 2022 Dec 23;24(1):229. doi: 10.3390/ijms24010229.
7
Omics analyses indicate sdhC/D act as hubs of early response of E. coli to antibiotics.
Arch Microbiol. 2022 Aug 7;204(9):544. doi: 10.1007/s00203-022-03156-6.
8
Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens.
Front Cell Infect Microbiol. 2022 Jul 19;12:900848. doi: 10.3389/fcimb.2022.900848. eCollection 2022.
9
Inhibition of Growth by Dihydroquinine and Its Mechanisms of Action.
Front Cell Infect Microbiol. 2022 May 11;12:852889. doi: 10.3389/fcimb.2022.852889. eCollection 2022.
10
Improved Sample Preparation for Untargeted Metabolomics Profiling of Escherichia coli.
Microbiol Spectr. 2021 Oct 31;9(2):e0062521. doi: 10.1128/Spectrum.00625-21. Epub 2021 Oct 6.

本文引用的文献

1
Unraveling the physiological complexities of antibiotic lethality.
Annu Rev Pharmacol Toxicol. 2015;55:313-32. doi: 10.1146/annurev-pharmtox-010814-124712. Epub 2014 Sep 10.
2
Reactive oxygen species and the bacterial response to lethal stress.
Curr Opin Microbiol. 2014 Oct;21:1-6. doi: 10.1016/j.mib.2014.06.008. Epub 2014 Jul 30.
3
Antibiotics induce redox-related physiological alterations as part of their lethality.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2100-9. doi: 10.1073/pnas.1401876111. Epub 2014 May 6.
4
One size does not fit all--bacterial cell death by antibiotics cannot be explained by the action of reactive oxygen species.
Angew Chem Int Ed Engl. 2013 Oct 11;52(42):10946-8. doi: 10.1002/anie.201304548. Epub 2013 Sep 3.
5
A problem of persistence: still more questions than answers?
Nat Rev Microbiol. 2013 Aug;11(8):587-91. doi: 10.1038/nrmicro3076.
6
Superoxide-mediated protection of Escherichia coli from antimicrobials.
Antimicrob Agents Chemother. 2013 Nov;57(11):5755-9. doi: 10.1128/AAC.00754-13. Epub 2013 Aug 26.
7
Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway.
Science. 2013 Jun 28;340(6140):1583-7. doi: 10.1126/science.1238328.
8
Antibiotic and ROS linkage questioned.
Nat Biotechnol. 2013 May;31(5):415-6. doi: 10.1038/nbt.2574.
9
How antibiotics kill bacteria: new models needed?
Nat Med. 2013 May;19(5):544-5. doi: 10.1038/nm.3198.
10
Killing by bactericidal antibiotics does not depend on reactive oxygen species.
Science. 2013 Mar 8;339(6124):1213-6. doi: 10.1126/science.1232688.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验