Suppr超能文献

用于远程控制治疗和体内感染消除的丝基可吸收电子设备。

Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement.

作者信息

Tao Hu, Hwang Suk-Won, Marelli Benedetto, An Bo, Moreau Jodie E, Yang Miaomiao, Brenckle Mark A, Kim Stanley, Kaplan David L, Rogers John A, Omenetto Fiorenzo G

机构信息

Department of Biomedical Engineering, Tufts University, Medford, MA 02155;

Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17385-9. doi: 10.1073/pnas.1407743111. Epub 2014 Nov 24.

Abstract

A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.

摘要

植入式医疗设备的范式转变存在于再生医学与技术的交汇点。在再生医学中,材料会在生物环境中重塑并整合;而技术方面,则是通过使用基于生物材料以及光电子学等生物可吸收技术的最新材料平台。在这种情况下,材料与技术的结合催生了一类生物医学设备,这类设备具有光学或电子功能,且在使用完毕后能无害地降解。我们在此展示一种完全可降解、可远程控制的植入式治疗设备,它在体内运行以对抗金黄色葡萄球菌感染,一旦其功能完成便会消失。这类设备提供完全可吸收的封装和电子元件,在植入后可远程开启,以提供必要的热疗或触发药物递送。这种外部可控的可吸收设备不仅消除了二次手术和取出的需求,而且作为治疗设备具有更广泛的用途,在干预后可留在手术或缝合部位,并可通过外部控制,在抗生素扩散受阻、存在深部感染或因抗生素耐药菌株出现而单独进行全身抗生素治疗不足时,通过热疗或远程触发药物释放来进行感染管理。功能完成后,该设备会在可编程的时间段内安全地被身体吸收。

相似文献

1
Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17385-9. doi: 10.1073/pnas.1407743111. Epub 2014 Nov 24.
2
Advanced Materials and Devices for Bioresorbable Electronics.
Acc Chem Res. 2018 May 15;51(5):988-998. doi: 10.1021/acs.accounts.7b00548. Epub 2018 Apr 17.
3
Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets.
ACS Appl Mater Interfaces. 2015 Sep 16;7(36):19870-5. doi: 10.1021/acsami.5b06059. Epub 2015 Sep 1.
4
Bioresorbable silicon electronic sensors for the brain.
Nature. 2016 Feb 4;530(7588):71-6. doi: 10.1038/nature16492. Epub 2016 Jan 18.
5
Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices.
Small. 2020 Apr;16(17):e2000294. doi: 10.1002/smll.202000294. Epub 2020 Mar 12.
6
Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications.
Adv Healthc Mater. 2019 Jun;8(11):e1801660. doi: 10.1002/adhm.201801660. Epub 2019 Apr 8.
7
Implantable Electronic Medicine Enabled by Bioresorbable Microneedles for Wireless Electrotherapy and Drug Delivery.
Nano Lett. 2022 Jul 27;22(14):5944-5953. doi: 10.1021/acs.nanolett.2c01997. Epub 2022 Jul 11.
8
A physically transient form of silicon electronics.
Science. 2012 Sep 28;337(6102):1640-4. doi: 10.1126/science.1226325.
9
Silk-based delivery systems of bioactive molecules.
Adv Drug Deliv Rev. 2010 Dec 30;62(15):1497-508. doi: 10.1016/j.addr.2010.03.009. Epub 2010 Mar 16.
10
Futuristic medical implants using bioresorbable materials and devices.
Biosens Bioelectron. 2019 Oct 1;142:111489. doi: 10.1016/j.bios.2019.111489. Epub 2019 Jul 2.

引用本文的文献

1
Transient electronics for sustainability: Emerging technologies and future directions.
Beilstein J Nanotechnol. 2025 Sep 4;16:1545-1556. doi: 10.3762/bjnano.16.109. eCollection 2025.
2
Biodegradable Temperature Sensors with Enhanced Sensitivity Using Bioderived Ionic Liquid with Sodium Ions.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40845-40854. doi: 10.1021/acsami.5c04965. Epub 2025 Jul 1.
4
Biosensors integrated within wearable devices for monitoring chronic wound status.
APL Bioeng. 2025 Feb 4;9(1):010901. doi: 10.1063/5.0220516. eCollection 2025 Mar.
5
Implantable Passive Sensors for Biomedical Applications.
Sensors (Basel). 2024 Dec 28;25(1):133. doi: 10.3390/s25010133.
6
Advanced nerve regeneration enabled by neural conformal electronic stimulators enhancing mitochondrial transport.
Bioact Mater. 2024 May 24;39:287-301. doi: 10.1016/j.bioactmat.2024.05.033. eCollection 2024 Sep.
7
Recent Progress and Challenges of Implantable Biodegradable Biosensors.
Micromachines (Basel). 2024 Mar 30;15(4):475. doi: 10.3390/mi15040475.
9
Resorbable conductive materials for optimally interfacing medical devices with the living.
Front Bioeng Biotechnol. 2024 Feb 21;12:1294238. doi: 10.3389/fbioe.2024.1294238. eCollection 2024.
10
Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems.
Nanomicro Lett. 2024 Feb 1;16(1):102. doi: 10.1007/s40820-023-01268-2.

本文引用的文献

1
Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment.
Adv Funct Mater. 2013 Feb 18;23(7):854-861. doi: 10.1002/adfm.201201636. Epub 2012 Sep 26.
2
Implantable, multifunctional, bioresorbable optics.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19584-9. doi: 10.1073/pnas.1209056109. Epub 2012 Nov 12.
3
A physically transient form of silicon electronics.
Science. 2012 Sep 28;337(6102):1640-4. doi: 10.1126/science.1226325.
4
Stabilization of vaccines and antibiotics in silk and eliminating the cold chain.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):11981-6. doi: 10.1073/pnas.1206210109. Epub 2012 Jul 9.
5
Implantable sensor technology: from research to clinical practice.
J Am Acad Orthop Surg. 2012 Jun;20(6):383-92. doi: 10.5435/JAAOS-20-06-383.
6
Biodegradable metals for cardiovascular stent application: interests and new opportunities.
Int J Mol Sci. 2011;12(7):4250-70. doi: 10.3390/ijms12074250. Epub 2011 Jun 29.
7
Regulation of silk material structure by temperature-controlled water vapor annealing.
Biomacromolecules. 2011 May 9;12(5):1686-96. doi: 10.1021/bm200062a. Epub 2011 Mar 22.
8
New opportunities for an ancient material.
Science. 2010 Jul 30;329(5991):528-31. doi: 10.1126/science.1188936.
9
Metamaterial silk composites at terahertz frequencies.
Adv Mater. 2010 Aug 24;22(32):3527-31. doi: 10.1002/adma.201000412.
10
Postoperative sepsis in the United States.
Ann Surg. 2010 Dec;252(6):1065-71. doi: 10.1097/SLA.0b013e3181dcf36e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验