Tufts University, Department of Biomedical Engineering, Medford, MA 02155, USA.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):11981-6. doi: 10.1073/pnas.1206210109. Epub 2012 Jul 9.
Sensitive biological compounds, such as vaccines and antibiotics, traditionally require a time-dependent "cold chain" to maximize therapeutic activity. This flawed process results in billions of dollars worth of viable drug loss during shipping and storage, and severely limits distribution to developing nations with limited infrastructure. To address these major limitations, we demonstrate self-standing silk protein biomaterial matrices capable of stabilizing labile vaccines and antibiotics, even at temperatures up to 60 °C over more than 6 months. Initial insight into the mechanistic basis for these findings is provided. Importantly, these findings suggest a transformative approach to the cold chain to revolutionize the way many labile therapeutic drugs are stored and utilized throughout the world.
敏感的生物化合物,如疫苗和抗生素,传统上需要一个依赖时间的“冷链”来最大限度地提高治疗效果。这一有缺陷的过程导致在运输和储存过程中损失了价值数十亿美元的有活性的药物,并且严重限制了向基础设施有限的发展中国家分发药物。为了解决这些主要限制,我们展示了自立的丝蛋白生物材料基质,即使在 60°C 以上的温度下,也能够稳定不稳定的疫苗和抗生素,超过 6 个月。提供了对这些发现的机械基础的初步了解。重要的是,这些发现表明了对冷链的变革性方法,可以彻底改变许多不稳定治疗药物在全球范围内的储存和使用方式。