Hwang Suk-Won, Tao Hu, Kim Dae-Hyeong, Cheng Huanyu, Song Jun-Kyul, Rill Elliott, Brenckle Mark A, Panilaitis Bruce, Won Sang Min, Kim Yun-Soung, Song Young Min, Yu Ki Jun, Ameen Abid, Li Rui, Su Yewang, Yang Miaomiao, Kaplan David L, Zakin Mitchell R, Slepian Marvin J, Huang Yonggang, Omenetto Fiorenzo G, Rogers John A
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Science. 2012 Sep 28;337(6102):1640-4. doi: 10.1126/science.1226325.
A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.
现代硅电子学的一个显著特点是其在实际应用中几乎能无限期保持物理不变性。尽管这一特性是当今集成电路应用的一个标志,但对于具有相反特性的系统可能存在机会,例如可植入设备,其在医学上有用的时间段内发挥功能,然后通过被身体吸收而完全消失。我们报告了一组用于具有这种瞬态行为的硅基互补金属氧化物半导体(CMOS)技术的材料、制造方案、器件组件和理论设计工具,以及集成传感器、致动器、电源系统和无线控制策略。一个可作为可编程非抗生素杀菌剂的可植入瞬态设备提供了一个系统级示例。