Suppr超能文献

Calcium influx through N-methyl-D-aspartate channels activates a potassium current in postnatal rat hippocampal neurons.

作者信息

Zorumski C F, Thio L L, Clark G D, Clifford D B

机构信息

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110.

出版信息

Neurosci Lett. 1989 May 8;99(3):293-9. doi: 10.1016/0304-3940(89)90462-x.

Abstract

Calcium-activated potassium conductances play important roles in modulating neuronal excitability. Indeed, the effects of some neurotransmitters such as acetylcholine and norepinephrine are, in part, due to actions on these conductances. We have found that the N-methyl-D-aspartate (NMDA) class of excitatory amino acid receptors also is coupled to a calcium activated potassium current. In voltage-clamped postnatal rat hippocampal neurons, NMDA responses consist of an initial inward cationic current followed by a slowly developing outward current carried by potassium ions. The slow outward current always follows the inward current, is associated with an increase in membrane conductance and is dependent on the influx of calcium ions. Similar responses are produced by other agonists active at NMDA receptors, including aspartate, glutamate and ibotenate, but are not activated by kainate, quisqualate or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA). Inhibition of the NMDA gated inward current by a competitive antagonist, 2-amino-5-phosphonovalerate (APV), eliminates the outward current. From these results we conclude that calcium influx through NMDA channels activates a potassium current. The extended time course of this outward current suggests that NMDA receptors may modulate neuronal excitability long after the opening of the NMDA channel.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验