Suppr超能文献

临床评估下颌骨半自动开源算法软件分割:实用可行性及新行动方案评估。

Clinical evaluation of semi-automatic open-source algorithmic software segmentation of the mandibular bone: Practical feasibility and assessment of a new course of action.

机构信息

Department of Oral & Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, Graz, Austria.

Computer Algorithms for Medicine (Cafe) Laboratory, Graz, Austria.

出版信息

PLoS One. 2018 May 10;13(5):e0196378. doi: 10.1371/journal.pone.0196378. eCollection 2018.

Abstract

INTRODUCTION

Computer assisted technologies based on algorithmic software segmentation are an increasing topic of interest in complex surgical cases. However-due to functional instability, time consuming software processes, personnel resources or licensed-based financial costs many segmentation processes are often outsourced from clinical centers to third parties and the industry. Therefore, the aim of this trial was to assess the practical feasibility of an easy available, functional stable and licensed-free segmentation approach to be used in the clinical practice.

MATERIAL AND METHODS

In this retrospective, randomized, controlled trail the accuracy and accordance of the open-source based segmentation algorithm GrowCut was assessed through the comparison to the manually generated ground truth of the same anatomy using 10 CT lower jaw data-sets from the clinical routine. Assessment parameters were the segmentation time, the volume, the voxel number, the Dice Score and the Hausdorff distance.

RESULTS

Overall semi-automatic GrowCut segmentation times were about one minute. Mean Dice Score values of over 85% and Hausdorff Distances below 33.5 voxel could be achieved between the algorithmic GrowCut-based segmentations and the manual generated ground truth schemes. Statistical differences between the assessment parameters were not significant (p<0.05) and correlation coefficients were close to the value one (r > 0.94) for any of the comparison made between the two groups.

DISCUSSION

Complete functional stable and time saving segmentations with high accuracy and high positive correlation could be performed by the presented interactive open-source based approach. In the cranio-maxillofacial complex the used method could represent an algorithmic alternative for image-based segmentation in the clinical practice for e.g. surgical treatment planning or visualization of postoperative results and offers several advantages. Due to an open-source basis the used method could be further developed by other groups or specialists. Systematic comparisons to other segmentation approaches or with a greater data amount are areas of future works.

摘要

简介

基于算法软件分割的计算机辅助技术是复杂手术病例中日益关注的话题。然而,由于功能不稳定、耗时的软件处理、人员资源或基于许可证的财务成本,许多分割过程通常由临床中心外包给第三方和行业。因此,本试验旨在评估一种易于获得、功能稳定且无需许可证的分割方法在临床实践中的实际可行性。

材料和方法

在这项回顾性、随机、对照试验中,通过将 10 个来自临床常规的下颌 CT 数据集的同一解剖结构的手动生成的真实数据与开源的基于 GrowCut 的分割算法进行比较,评估了开源分割算法 GrowCut 的准确性和一致性。评估参数包括分割时间、体积、体素数、Dice 评分和 Hausdorff 距离。

结果

总体而言,半自动 GrowCut 分割时间约为 1 分钟。算法 GrowCut 分割与手动生成的真实数据方案之间可以达到超过 85%的平均 Dice 评分值和低于 33.5 体素的 Hausdorff 距离。评估参数之间的统计学差异不显著(p<0.05),并且任何两组之间的比较的相关系数都接近 1(r > 0.94)。

讨论

通过所提出的交互式开源方法,可以实现具有高精度和高正相关性的完整功能稳定和节省时间的分割。在颅颌面复合体中,该方法可作为基于图像的分割的算法替代方法,例如用于手术治疗计划或术后结果的可视化,并具有多个优势。由于基于开源,因此该方法可以由其他小组或专家进一步开发。与其他分割方法或更大数据量的系统比较是未来工作的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2843/5944980/a1f5d960959e/pone.0196378.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验