Suppr超能文献

使用组 l2,1 范数预测认知结果的皮质表面生物标志物。

Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm.

作者信息

Yan Jingwen, Li Taiyong, Wang Hua, Huang Heng, Wan Jing, Nho Kwangsik, Kim Sungeun, Risacher Shannon L, Saykin Andrew J, Shen Li

机构信息

Department of Radiology and Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biohealth, School of Informatics and Computing, Indiana University, Indianapolis, IN, USA.

School of Economic Information Engineering, Southwestern University of Finance and Economics, Chengdu, China.

出版信息

Neurobiol Aging. 2015 Jan;36 Suppl 1:S185-93. doi: 10.1016/j.neurobiolaging.2014.07.045. Epub 2014 Aug 29.

Abstract

Regression models have been widely studied to investigate the prediction power of neuroimaging measures as biomarkers for inferring cognitive outcomes in the Alzheimer's disease study. Most of these models ignore the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a group-level l2,1-norm strategy to group relevant features together in an anatomically meaningful manner and use this prior knowledge to guide the learning process. This approach also takes into account the correlation among cognitive outcomes for building a more appropriate predictive model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small set of surface markers that are biologically meaningful.

摘要

在阿尔茨海默病研究中,回归模型已被广泛用于研究神经影像测量作为推断认知结果生物标志物的预测能力。这些模型大多忽略了神经影像测量内部或认知结果之间的相互关联结构,因此产生最优解的能力可能有限。为了解决这个问题,我们建议使用一种新的稀疏多任务学习模型,称为组稀疏多任务回归和特征选择(G-SMuRFS),并通过在一个大型队列中检验详细皮质厚度测量对3种认知分数的预测能力来证明其有效性。G-SMuRFS提出了一种组级l2,1范数策略,以一种具有解剖学意义的方式将相关特征分组在一起,并利用这些先验知识来指导学习过程。这种方法还考虑了认知结果之间的相关性,以构建更合适的预测模型。与传统方法相比,G-SMuRFS不仅表现出卓越的性能,还识别出一小部分具有生物学意义的表面标志物。

相似文献

1
Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm.使用组 l2,1 范数预测认知结果的皮质表面生物标志物。
Neurobiol Aging. 2015 Jan;36 Suppl 1:S185-93. doi: 10.1016/j.neurobiolaging.2014.07.045. Epub 2014 Aug 29.

引用本文的文献

4
Groupwise structural sparsity for discriminative voxels identification.用于鉴别体素识别的逐组结构稀疏性
Front Neurosci. 2023 Sep 7;17:1247315. doi: 10.3389/fnins.2023.1247315. eCollection 2023.

本文引用的文献

3
Interpretable whole-brain prediction analysis with GraphNet.基于 GraphNet 的可解释全脑预测分析。
Neuroimage. 2013 May 15;72:304-21. doi: 10.1016/j.neuroimage.2012.12.062. Epub 2013 Jan 5.
6
Generative-discriminative basis learning for medical imaging.基于生成-判别式的医学影像基础学习。
IEEE Trans Med Imaging. 2012 Jan;31(1):51-69. doi: 10.1109/TMI.2011.2162961. Epub 2011 Jul 25.
7
Total variation regularization for fMRI-based prediction of behavior.基于功能磁共振成像的行为预测的全变差正则化。
IEEE Trans Med Imaging. 2011 Jul;30(7):1328-40. doi: 10.1109/TMI.2011.2113378. Epub 2011 Feb 10.
8
General multivariate linear modeling of surface shapes using SurfStat.使用 SurfStat 对表面形状进行广义多元线性建模。
Neuroimage. 2010 Nov 1;53(2):491-505. doi: 10.1016/j.neuroimage.2010.06.032. Epub 2010 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验