Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
J Mol Biol. 2015 Feb 13;427(3):637-51. doi: 10.1016/j.jmb.2014.10.015. Epub 2014 Oct 30.
The double membrane of the eukaryotic nucleus surrounds the genome, constraining it to a nuclear sphere. Proteins, RNA protein particles and artificial chromosome rings diffuse rapidly and freely throughout the nucleoplasm, while chromosomal loci show subdiffusive movement with varying degrees of constraint. In situ biochemical approaches and live imaging studies have revealed the existence of nuclear subcompartments that are enriched for specific chromatin states and/or enzymatic activities. This sequestration is thought to enhance the formation of heterochromatin, particularly when factors of limited abundance are involved. Implicit in the concept of compartmentation is the idea that chromatin is able to move from one compartment to another. Indeed, in budding yeast, gene activation, repression and the presence of persistent DNA double-strand breaks each has been shown to provoke subnuclear relocalization of chromatin. In some cases, movement has been linked to the action of ATP-dependent chromatin remodeling complexes, more specifically to the Snf2-related ATPase-containing complexes, SWR-C and INO80-C. Here we examine how these multi-subunit remodelers contribute to chromatin-based processes linked to the DNA damage response. We review recent evidence that supports a role for yeast SWR-C and INO80-C in determining the subnuclear position of damaged domains and finally, we recap the multiple ways in which these remodelers contribute to genomic integrity.
真核细胞核的双层膜围绕着基因组,将其约束在一个核球内。蛋白质、RNA 蛋白颗粒和人工染色体环在核质中迅速而自由地扩散,而染色体位点则表现出具有不同程度约束的亚扩散运动。原位生化方法和活体成像研究揭示了存在富含特定染色质状态和/或酶活性的核亚区室。这种隔离被认为可以增强异染色质的形成,特别是当涉及到有限丰度的因子时。区室化的概念暗示着染色质能够从一个区室移动到另一个区室。事实上,在 budding yeast 中,基因激活、抑制和持续的 DNA 双链断裂的存在都已被证明会引起染色质的亚核重新定位。在某些情况下,这种运动与 ATP 依赖性染色质重塑复合物的作用有关,更具体地说,与包含 Snf2 相关 ATP 酶的复合物 SWR-C 和 INO80-C 有关。在这里,我们研究了这些多亚基重塑酶如何有助于与 DNA 损伤反应相关的基于染色质的过程。我们回顾了最近的证据,支持酵母 SWR-C 和 INO80-C 在确定受损域的亚核位置方面的作用,最后,我们总结了这些重塑酶对基因组完整性的多种贡献方式。