Suppr超能文献

从轻度认知障碍快速进展为阿尔茨海默病的转录组学预测指标

Transcriptomic predictors of rapid progression from mild cognitive impairment to Alzheimer's disease.

作者信息

Huang Yi-Long, Tsai Tsung-Hsien, Shen Zhao-Qing, Chan Yun-Hsuan, Tu Chih-Wei, Tung Chien-Yi, Wang Pei-Ning, Tsai Ting-Fen

机构信息

Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.

Advanced Tech BU, Acer Inc., 8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City, 221421, Taiwan.

出版信息

Alzheimers Res Ther. 2025 Jan 3;17(1):3. doi: 10.1186/s13195-024-01651-0.

Abstract

BACKGROUND

Effective treatment for Alzheimer's disease (AD) remains an unmet need. Thus, identifying patients with mild cognitive impairment (MCI) who are at high-risk of progressing to AD is crucial for early intervention.

METHODS

Blood-based transcriptomics analyses were performed using a longitudinal study cohort to compare progressive MCI (P-MCI, n = 28), stable MCI (S-MCI, n = 39), and AD patients (n = 49). Statistical DESeq2 analysis and machine learning methods were employed to identify differentially expressed genes (DEGs) and develop prediction models.

RESULTS

We discovered a remarkable gender-specific difference in DEGs that distinguish P-MCI from S-MCI. Machine learning models achieved high accuracy in distinguishing P-MCI from S-MCI (AUC 0.93), AD from S-MCI (AUC 0.94), and AD from P-MCI (AUC 0.92). An 8-gene signature was identified for distinguishing P-MCI from S-MCI.

CONCLUSIONS

Blood-based transcriptomic biomarker signatures show great utility in identifying high-risk MCI patients, with mitochondrial processes emerging as a crucial contributor to AD progression.

摘要

背景

阿尔茨海默病(AD)的有效治疗仍然是未满足的需求。因此,识别有进展为AD高风险的轻度认知障碍(MCI)患者对于早期干预至关重要。

方法

使用纵向研究队列进行基于血液的转录组学分析,以比较进展性MCI(P-MCI,n = 28)、稳定MCI(S-MCI,n = 39)和AD患者(n = 49)。采用统计DESeq2分析和机器学习方法来识别差异表达基因(DEG)并开发预测模型。

结果

我们发现区分P-MCI与S-MCI的DEG存在显著的性别特异性差异。机器学习模型在区分P-MCI与S-MCI(AUC 0.93)、AD与S-MCI(AUC 0.94)以及AD与P-MCI(AUC 0.92)方面具有较高的准确性。确定了一个8基因特征用于区分P-MCI与S-MCI。

结论

基于血液的转录组生物标志物特征在识别高风险MCI患者方面显示出巨大效用,线粒体过程成为AD进展的关键因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8e5/11697870/efeafe8ecdbe/13195_2024_1651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验