Wall Michael E, Van Benschoten Andrew H, Sauter Nicholas K, Adams Paul D, Fraser James S, Terwilliger Thomas C
Computer, Computational, and Statistical Sciences Division and
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17887-92. doi: 10.1073/pnas.1416744111. Epub 2014 Dec 1.
X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.
蛋白质晶体的X射线衍射包括尖锐的布拉格反射峰以及峰之间的漫散射强度。布拉格散射中的信息仅限于平均电子密度中可用的信息。漫散射源于电子密度变化的相关性,因此包含有关蛋白质中集体运动的信息。以前使用分子动力学(MD)模拟来模拟漫散射的研究受到构象系综采样不足的阻碍。为了克服这个问题,我们对结晶葡萄球菌核酸酶进行了1.1微秒的MD模拟,提供了比以前的研究多100倍的采样。该模拟能够对漫散射强度进行可重复计算,并预测功能上重要的运动,包括至少八种具有不同活性位点几何形状的亚稳态之间的转变。使用MD模型计算的总漫散射强度与实验数据高度相关。特别是,漫散射强度的各向同性分量有很好的一致性,各向异性分量有实质性但较弱的一致性。将MD模型分解为蛋白质和溶剂成分表明,蛋白质-溶剂相互作用对整体漫散射强度有很大贡献。我们得出结论,漫散射可用于验证MD模拟的预测,并可提供信息以改进蛋白质运动的MD模型。