Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
Acta Crystallogr D Struct Biol. 2023 Jan 1;79(Pt 1):50-65. doi: 10.1107/S2059798322011871.
It is investigated whether molecular-dynamics (MD) simulations can be used to enhance macromolecular crystallography (MX) studies. Historically, protein crystal structures have been described using a single set of atomic coordinates. Because conformational variation is important for protein function, researchers now often build models that contain multiple structures. Methods for building such models can fail, however, in regions where the crystallographic density is difficult to interpret, for example at the protein-solvent interface. To address this limitation, a set of MD-MX methods that combine MD simulations of protein crystals with conventional modeling and refinement tools have been developed. In an application to a cyclic adenosine monophosphate-dependent protein kinase at room temperature, the procedure improved the interpretation of ambiguous density, yielding an alternative water model and a revised protein model including multiple conformations. The revised model provides mechanistic insights into the catalytic and regulatory interactions of the enzyme. The same methods may be used in other MX studies to seek mechanistic insights.
研究人员调查了分子动力学(MD)模拟是否可用于增强大分子晶体学(MX)研究。从历史上看,蛋白质晶体结构是使用一组原子坐标来描述的。由于构象变化对于蛋白质功能很重要,因此研究人员现在通常构建包含多个结构的模型。但是,在晶体密度难以解释的区域(例如在蛋白质-溶剂界面处),构建此类模型的方法可能会失败。为了解决这一限制,已经开发了一组 MD-MX 方法,该方法将蛋白质晶体的 MD 模拟与常规建模和精炼工具相结合。在一项针对室温下的环腺苷一磷酸依赖性蛋白激酶的应用中,该程序改善了对模棱两可密度的解释,生成了替代的水模型和包含多种构象的修订蛋白质模型。修订后的模型提供了对酶的催化和调节相互作用的机制见解。其他 MX 研究也可以使用相同的方法来寻求机制见解。