Suppr超能文献

电压传感器毒素与脂质膜的结构相互作用。

Structural interactions of a voltage sensor toxin with lipid membranes.

作者信息

Mihailescu Mihaela, Krepkiy Dmitriy, Milescu Mirela, Gawrisch Klaus, Swartz Kenton J, White Stephen

机构信息

Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850; National Institute of Standards and Technology Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899;

Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892;

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5463-70. doi: 10.1073/pnas.1415324111. Epub 2014 Dec 1.

Abstract

Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.

摘要

狼蛛毒液中的蛋白质毒素会改变多种离子通道蛋白的活性,包括电压门控、牵张激活和配体激活的阳离子通道。尽管已证明狼蛛毒素可分配到膜中,并且认为膜在其活性中起重要作用,但这些毒素与脂质膜之间的结构相互作用却知之甚少。在此,我们使用固态核磁共振和中子衍射来研究电压传感器毒素(VSTx1)与脂质膜之间的相互作用,目的是确定毒素在膜中的定位并确定其对膜结构的影响。我们的结果表明,VSTx1定位于脂质膜的头部基团区域,并导致双层变薄。毒素的取向使得许多碱性残基处于水相中,所有三个色氨酸残基都处于界面位置,并且几个疏水残基位于膜内部。这种优选取向的一个显著特征是,介导与电压传感器结合的毒素表面理想地位于脂质双层内,有利于毒素与电压传感器之间形成复合物。

相似文献

1
Structural interactions of a voltage sensor toxin with lipid membranes.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5463-70. doi: 10.1073/pnas.1415324111. Epub 2014 Dec 1.
2
Tarantula toxins interact with voltage sensors within lipid membranes.
J Gen Physiol. 2007 Nov;130(5):497-511. doi: 10.1085/jgp.200709869. Epub 2007 Oct 15.
4
Vstx1, a modifier of Kv channel gating, localizes to the interfacial region of lipid bilayers.
Biochemistry. 2006 Oct 3;45(39):11844-55. doi: 10.1021/bi061111z.
5
Localization of the voltage-sensor toxin receptor on KvAP.
Biochemistry. 2004 Aug 10;43(31):10071-9. doi: 10.1021/bi049463y.
6
Voltage-sensor activation with a tarantula toxin as cargo.
Nature. 2005 Aug 11;436(7052):857-60. doi: 10.1038/nature03873.
7
Structure and orientation of a voltage-sensor toxin in lipid membranes.
Biophys J. 2010 Jul 21;99(2):638-46. doi: 10.1016/j.bpj.2010.04.061.
8
Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes.
J Biol Chem. 2018 Jun 8;293(23):9041-9052. doi: 10.1074/jbc.RA118.002553. Epub 2018 Apr 27.
10
Molecular Dynamics Simulation Reveals Unique Interplays Between a Tarantula Toxin and Lipid Membranes.
J Membr Biol. 2017 Jun;250(3):315-325. doi: 10.1007/s00232-017-9965-y. Epub 2017 Jun 8.

引用本文的文献

2
ω-Grammotoxin-SIA inhibits voltage-gated Na+ channel currents.
J Gen Physiol. 2024 Oct 7;156(10). doi: 10.1085/jgp.202413563. Epub 2024 Jul 23.
3
The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation.
J Membr Biol. 2023 Dec;256(4-6):343-372. doi: 10.1007/s00232-023-00289-7. Epub 2023 Aug 31.
4
Membrane Models and Experiments Suitable for Studies of the Cholesterol Bilayer Domains.
Membranes (Basel). 2023 Mar 10;13(3):320. doi: 10.3390/membranes13030320.
5
Special issue for Klaus Gawrisch.
Biophys J. 2023 Mar 21;122(6):E1-E8. doi: 10.1016/j.bpj.2023.02.022. Epub 2023 Mar 15.
7
Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider.
Proc Natl Acad Sci U S A. 2022 Feb 1;119(5). doi: 10.1073/pnas.2110932119.
9
Hydrophobic Drug/Toxin Binding Sites in Voltage-Dependent K and Na Channels.
Front Pharmacol. 2020 May 15;11:735. doi: 10.3389/fphar.2020.00735. eCollection 2020.
10
Membrane Lipid Requirements of the Lysine Transporter Lyp1 from Saccharomyces cerevisiae.
J Mol Biol. 2020 Jun 26;432(14):4023-4031. doi: 10.1016/j.jmb.2020.04.029. Epub 2020 May 13.

本文引用的文献

1
Measuring membrane penetration with depth-dependent fluorescence quenching: distribution analysis is coming of age.
Biochim Biophys Acta. 2014 Sep;1838(9):2289-95. doi: 10.1016/j.bbamem.2014.02.019. Epub 2014 Mar 1.
3
Opening the shaker K+ channel with hanatoxin.
J Gen Physiol. 2013 Feb;141(2):203-16. doi: 10.1085/jgp.201210914.
4
High yield production and refolding of the double-knot toxin, an activator of TRPV1 channels.
PLoS One. 2012;7(12):e51516. doi: 10.1371/journal.pone.0051516. Epub 2012 Dec 11.
5
Structural interactions between lipids, water and S1-S4 voltage-sensing domains.
J Mol Biol. 2012 Nov 2;423(4):632-47. doi: 10.1016/j.jmb.2012.07.015. Epub 2012 Jul 31.
6
Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes.
Nature. 2012 Sep 20;489(7416):400-5. doi: 10.1038/nature11375. Epub 2012 Jul 29.
9
The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4.
Biochemistry. 2011 Jul 26;50(29):6295-300. doi: 10.1021/bi200770q. Epub 2011 Jun 29.
10
Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors.
J Gen Physiol. 2011 Jul;138(1):59-72. doi: 10.1085/jgp.201110614. Epub 2011 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验