Batista Pedro J, Molinie Benoit, Wang Jinkai, Qu Kun, Zhang Jiajing, Li Lingjie, Bouley Donna M, Lujan Ernesto, Haddad Bahareh, Daneshvar Kaveh, Carter Ava C, Flynn Ryan A, Zhou Chan, Lim Kok-Seong, Dedon Peter, Wernig Marius, Mullen Alan C, Xing Yi, Giallourakis Cosmas C, Chang Howard Y
Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Cell Stem Cell. 2014 Dec 4;15(6):707-19. doi: 10.1016/j.stem.2014.09.019. Epub 2014 Oct 16.
N6-methyl-adenosine (m(6)A) is the most abundant modification on messenger RNAs and is linked to human diseases, but its functions in mammalian development are poorly understood. Here we reveal the evolutionary conservation and function of m(6)A by mapping the m(6)A methylome in mouse and human embryonic stem cells. Thousands of messenger and long noncoding RNAs show conserved m(6)A modification, including transcripts encoding core pluripotency transcription factors. m(6)A is enriched over 3' untranslated regions at defined sequence motifs and marks unstable transcripts, including transcripts turned over upon differentiation. Genetic inactivation or depletion of mouse and human Mettl3, one of the m(6)A methylases, led to m(6)A erasure on select target genes, prolonged Nanog expression upon differentiation, and impaired ESC exit from self-renewal toward differentiation into several lineages in vitro and in vivo. Thus, m(6)A is a mark of transcriptome flexibility required for stem cells to differentiate to specific lineages.
N6-甲基腺苷(m(6)A)是信使核糖核酸上最为丰富的修饰,且与人类疾病相关,但其在哺乳动物发育过程中的功能仍知之甚少。在此,我们通过绘制小鼠和人类胚胎干细胞中的m(6)A甲基化组图谱,揭示了m(6)A的进化保守性及其功能。数以千计的信使核糖核酸和长链非编码核糖核酸显示出保守的m(6)A修饰,包括编码核心多能性转录因子的转录本。m(6)A在特定序列基序的3'非翻译区富集,并标记不稳定的转录本,包括在分化时被更替的转录本。对m(6)A甲基转移酶之一的小鼠和人类Mettl3进行基因失活或敲减,导致特定靶基因上的m(6)A消除,分化时Nanog表达延长,并损害胚胎干细胞在体外和体内从自我更新状态退出并向多个谱系分化的能力。因此,m(6)A是干细胞分化为特定谱系所需的转录组灵活性的标志。