Narayan Vivek, Ravindra Kodihalli C, Liao Chang, Kaushal Naveen, Carlson Bradley A, Prabhu K Sandeep
Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802.
Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.
J Nutr Biochem. 2015 Feb;26(2):138-45. doi: 10.1016/j.jnutbio.2014.09.009. Epub 2014 Oct 24.
Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of proinflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNFα promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1-infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the down-regulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone-marrow-derived macrophages from Trsp(fl/fl)Cre(LysM) mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid contributes, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of proinflammatory genes.
组蛋白乙酰转移酶对组蛋白和非组蛋白进行乙酰化修饰,这在促炎基因的表达中起着关键作用。鉴于膳食硒在减轻炎症方面的重要性,我们推测补充硒可能在表观遗传水平上调节炎症基因的表达。通过染色质免疫沉淀分析和免疫印迹法,在体外和体内炎症模型中研究了硒对组蛋白乙酰化的影响。我们的结果表明,以亚硒酸盐形式补充硒可降低COX - 2和TNFα启动子中组蛋白H4在K12和K16位点的乙酰化水平,以及原代和永生化巨噬细胞中氧化还原敏感转录因子NFκB的p65亚基的乙酰化水平。另一方面,硒代蛋氨酸的作用则弱得多。用亚硒酸盐处理HIV - 1感染的人类单核细胞也显著降低了HIV - 1启动子上H4在K12和K16位点的乙酰化水平,这支持了硒对病毒前体表达的下调作用。在用葡聚糖硫酸钠处理的小鼠结肠提取物中也观察到组蛋白乙酰化的类似降低,这与饮食中的硒水平密切相关。来自Trsp(fl/fl)Cre(LysM)小鼠的骨髓来源巨噬细胞(这些小鼠的巨噬细胞中缺乏硒蛋白表达)证实了硒蛋白在抑制组蛋白H4乙酰化中的重要作用。我们的研究表明,硒蛋白改变花生四烯酸代谢的能力部分有助于其抑制组蛋白乙酰化的能力。总之,我们的研究表明硒蛋白在促炎基因的表观遗传调控中具有新的作用。
J Nutr Biochem. 2015-2
J Immunol. 2014-9-3
J Diabetes Complications. 2017-2
Nutrients. 2024-10-25
Front Nutr. 2024-5-2
Front Nutr. 2023-3-16
Materials (Basel). 2023-2-3
Int J Mol Sci. 2023-1-30
Mol Cell Biochem. 2023-10
Antioxidants (Basel). 2022-12-7
J Immunol. 2014-9-3
Arch Pharm (Weinheim). 2011-10-28
Cell Host Microbe. 2011-11-17
J Inflamm (Lond). 2011-1-27
Mol Cell Biol. 2010-2-16