Suppr超能文献

基于显式网络三角剖分的城市道路网络交通事故发生率的时空建模

Spatio-temporal modeling of traffic accidents incidence on urban road networks based on an explicit network triangulation.

作者信息

Chaudhuri Somnath, Juan Pablo, Mateu Jorge

机构信息

Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain.

IMAC, University Jaume I, Castellón, Spain.

出版信息

J Appl Stat. 2022 Jul 29;50(16):3229-3250. doi: 10.1080/02664763.2022.2104822. eCollection 2023.

Abstract

Traffic deaths and injuries are one of the major global public health concerns. The present study considers accident records in an urban environment to explore and analyze spatial and temporal in the incidence of road traffic accidents. We propose a spatio-temporal model to provide predictions of the number of traffic collisions on any given road segment, to further generate a risk map of the entire road network. A Bayesian methodology using Integrated nested Laplace approximations with stochastic partial differential equations (SPDE) has been applied in the modeling process. As a novelty, we have introduced SPDE network triangulation to estimate the spatial autocorrelation restricted to the linear network. The resulting risk maps provide information to identify safe routes between source and destination points, and can be useful for accident prevention and multi-disciplinary road safety measures.

摘要

交通死亡和伤害是全球主要的公共卫生问题之一。本研究考虑城市环境中的事故记录,以探索和分析道路交通事故发生率的时空特征。我们提出了一个时空模型,用于预测任何给定路段上的交通碰撞次数,进而生成整个道路网络的风险地图。在建模过程中应用了一种贝叶斯方法,该方法使用带有随机偏微分方程(SPDE)的集成嵌套拉普拉斯近似。作为一项创新,我们引入了SPDE网络三角测量法来估计限于线性网络的空间自相关性。由此产生的风险地图为识别源点和目的地之间的安全路线提供了信息,并且可用于事故预防和多学科道路安全措施。

相似文献

本文引用的文献

7
Predictive Modeling With Big Data: Is Bigger Really Better?大数据预测建模:更大真的更好吗?
Big Data. 2013 Dec;1(4):215-26. doi: 10.1089/big.2013.0037. Epub 2013 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验