Suppr超能文献

误差类别映射在动态对比增强磁共振成像数据的药代动力学模型分析中的应用。

The use of error-category mapping in pharmacokinetic model analysis of dynamic contrast-enhanced MRI data.

作者信息

Gill Andrew B, Anandappa Gayathri, Patterson Andrew J, Priest Andrew N, Graves Martin J, Janowitz Tobias, Jodrell Duncan I, Eisen Tim, Lomas David J

机构信息

Department of Radiology, Box 218, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Medical Physics, Box 152, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.

Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.

出版信息

Magn Reson Imaging. 2015 Feb;33(2):246-51. doi: 10.1016/j.mri.2014.10.010. Epub 2014 Nov 7.

Abstract

This study introduces the use of 'error-category mapping' in the interpretation of pharmacokinetic (PK) model parameter results derived from dynamic contrast-enhanced (DCE-) MRI data. Eleven patients with metastatic renal cell carcinoma were enrolled in a multiparametric study of the treatment effects of bevacizumab. For the purposes of the present analysis, DCE-MRI data from two identical pre-treatment examinations were analysed by application of the extended Tofts model (eTM), using in turn a model arterial input function (AIF), an individually-measured AIF and a sample-average AIF. PK model parameter maps were calculated. Errors in the signal-to-gadolinium concentration ([Gd]) conversion process and the model-fitting process itself were assigned to category codes on a voxel-by-voxel basis, thereby forming a colour-coded 'error-category map' for each imaged slice. These maps were found to be repeatable between patient visits and showed that the eTM converged adequately in the majority of voxels in all the tumours studied. However, the maps also clearly indicated sub-regions of low Gd uptake and of non-convergence of the model in nearly all tumours. The non-physical condition ve ≥ 1 was the most frequently indicated error category and appeared sensitive to the form of AIF used. This simple method for visualisation of errors in DCE-MRI could be used as a routine quality-control technique and also has the potential to reveal otherwise hidden patterns of failure in PK model applications.

摘要

本研究介绍了“误差类别映射”在解释源自动态对比增强(DCE-)MRI数据的药代动力学(PK)模型参数结果中的应用。11例转移性肾细胞癌患者参加了一项关于贝伐单抗治疗效果的多参数研究。出于本分析的目的,对来自两次相同预处理检查的DCE-MRI数据应用扩展Tofts模型(eTM)进行分析,依次使用模型动脉输入函数(AIF)、个体测量的AIF和样本平均AIF。计算了PK模型参数图。在体素逐个基础上,将信号与钆浓度([Gd])转换过程以及模型拟合过程本身中的误差分配给类别代码,从而为每个成像切片形成一个颜色编码的“误差类别图”。发现这些图在患者就诊之间是可重复的,并且表明eTM在所有研究肿瘤的大多数体素中充分收敛。然而,这些图也清楚地表明了几乎所有肿瘤中钆摄取低和模型不收敛的子区域。非物理条件ve≥1是最常指出的误差类别,并且似乎对所使用的AIF形式敏感。这种用于可视化DCE-MRI中误差的简单方法可用作常规质量控制技术,并且还具有揭示PK模型应用中其他隐藏的失败模式的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab17/4728188/3142251aad8a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验