Salazar-Parra Carolina, Aranjuelo Iker, Pascual Inmaculada, Erice Gorka, Sanz-Sáez Álvaro, Aguirreolea Jone, Sánchez-Díaz Manuel, Irigoyen Juan José, Araus José Luis, Morales Fermín
Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias y Farmacia, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, 31192 Mutilva Baja, Spain; Plant Biology and Ecology Department, Science and Technology Faculty, University of the Basque Country, Barrio Sarriena sn, 48940 Leioa, Bizkaia, Spain.
J Plant Physiol. 2015 Feb 1;174:97-109. doi: 10.1016/j.jplph.2014.10.009. Epub 2014 Nov 5.
Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700ppm vs. ambient, ca. 400ppm), temperature (ambient vs. elevated, ambient +4°C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment (13)C isotopic composition (δ(13)C) under elevated CO2 (from -10.30 to -24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress.
尽管过去对高浓度二氧化碳条件下植物的表现进行了广泛研究,但对于光合作用性能如何随二氧化碳、水分供应和温度条件同时变化却知之甚少。此外,尽管植物水平的碳平衡在作物对高浓度二氧化碳条件的响应中具有相关性,但相对而言,这一主题受到的关注较少。为了测试葡萄光合器官对预测的气候变化条件的响应,将葡萄(Vitis vinifera L. cv. Tempranillo)结果插条置于不同的二氧化碳(高浓度,700ppm 与环境浓度,约 400ppm)、温度(环境温度与升高温度,环境温度 +4°C)和灌溉水平(部分灌溉与充分灌溉)条件下。通过监测净光合作用(AN,碳增益)、呼吸作用(RD)和光呼吸作用(RL)(碳损失)来跟踪碳平衡。高浓度二氧化碳条件下环境(13)C 同位素组成(δ(13)C)的改变(从 -10.30 到 -24.93‰)使得能够进一步表征碳在根、插条、茎、叶柄、叶、穗轴和浆果中的分配情况。无论灌溉水平和温度如何,暴露于高浓度二氧化碳都会诱导植物光合适应。碳/氮失衡反映了在 700ppm 二氧化碳浓度下生长的植物无法形成强大的碳汇。标记碳向储存器官(主茎和根)的分配并未避免标记光合产物在叶片中的积累,对 Rubisco 羧化活性产生负面影响。该研究还表明,处理 20 天后,未观察到叶绿素或类胡萝卜素的氧化损伤,这表明在当前或升高温度下,二氧化碳对水分胁迫的不利影响具有保护作用。