Suppr超能文献

短链脂肪酸通过激活P-TEFb和多种组蛋白修饰,有力地诱导T细胞中潜伏的HIV-1。

Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications.

作者信息

Das Biswajit, Dobrowolski Curtis, Shahir Abdel-Malek, Feng Zhimin, Yu Xiaolan, Sha Jinfeng, Bissada Nabil F, Weinberg Aaron, Karn Jonathan, Ye Fengchun

机构信息

Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.

Department of Periodontics, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, United States.

出版信息

Virology. 2015 Jan 1;474:65-81. doi: 10.1016/j.virol.2014.10.033. Epub 2014 Nov 14.

Abstract

HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3-9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients.

摘要

尽管接受了有效的治疗(高效抗逆转录病毒疗法),患有严重牙周炎的艾滋病患者唾液和血浆中仍有高水平的残余病毒。牙周病原体产生的多种短链脂肪酸(SCFAs)在Jurkat细胞和原代T细胞潜伏模型中均可重新激活HIV-1。SCFAs不仅能激活正性转录延伸因子b(P-TEFb),这是Tat必需的细胞辅因子,还能通过诱导组蛋白修饰来逆转染色质阻滞。SCFAs通过抑制1/2类组蛋白去乙酰化酶(HDACs)同时增加组蛋白乙酰化,并通过下调3类HDAC沉默调节蛋白1(SIRT1)以及组蛋白甲基转移酶zeste同源物2增强子(EZH2)和异染色质蛋白3-9同源物1抑制因子(SUV39H1)的表达,降低前病毒长末端重复序列(LTR)处的抑制性组蛋白三甲基化。我们的研究结果提供了牙周疾病与HIV-1复制增强之间的机制联系,并表明治疗牙周疾病或阻断SCFAs的活性将对艾滋病患者具有治疗益处。

相似文献

1
Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications.
Virology. 2015 Jan 1;474:65-81. doi: 10.1016/j.virol.2014.10.033. Epub 2014 Nov 14.
3
Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2.
J Virol. 2011 Sep;85(17):9078-89. doi: 10.1128/JVI.00836-11. Epub 2011 Jun 29.
4
NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation.
EMBO J. 2006 Jan 11;25(1):139-49. doi: 10.1038/sj.emboj.7600900. Epub 2005 Dec 1.
6
The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response.
FEBS Lett. 2011 Nov 16;585(22):3549-54. doi: 10.1016/j.febslet.2011.10.018. Epub 2011 Oct 19.
7
FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency.
J Biol Chem. 2015 Nov 6;290(45):27297-27310. doi: 10.1074/jbc.M115.652339. Epub 2015 Sep 16.
8
Gene silencing in HIV-1 latency by polycomb repressive group.
Virol J. 2011 Apr 18;8:179. doi: 10.1186/1743-422X-8-179.
10
The KAT5-Acetyl-Histone4-Brd4 axis silences HIV-1 transcription and promotes viral latency.
PLoS Pathog. 2018 Apr 23;14(4):e1007012. doi: 10.1371/journal.ppat.1007012. eCollection 2018 Apr.

引用本文的文献

1
Periodontal inflammation as a potential driver of HIV low level viremia.
PLoS One. 2024 Jun 17;19(6):e0305641. doi: 10.1371/journal.pone.0305641. eCollection 2024.
2
3
Protein modification by short-chain fatty acid metabolites in sepsis: a comprehensive review.
Front Immunol. 2023 Oct 6;14:1171834. doi: 10.3389/fimmu.2023.1171834. eCollection 2023.
6
A Reliable Primary Cell Model for HIV Latency: The QUECEL (Quiescent Effector Cell Latency) Method.
Methods Mol Biol. 2022;2407:57-68. doi: 10.1007/978-1-0716-1871-4_5.
8
Redefining the Histone Deacetylase Inhibitor Pharmacophore: High Potency with No Zinc Cofactor Interaction.
ACS Med Chem Lett. 2021 Mar 7;12(4):540-547. doi: 10.1021/acsmedchemlett.1c00074. eCollection 2021 Apr 8.
9
Experimental Systems for Measuring HIV Latency and Reactivation.
Viruses. 2020 Nov 9;12(11):1279. doi: 10.3390/v12111279.
10
Commensal bacteria in the upper respiratory tract regulate susceptibility to infection.
Curr Opin Immunol. 2020 Oct;66:42-49. doi: 10.1016/j.coi.2020.03.010. Epub 2020 May 19.

本文引用的文献

1
The SCFA Receptor GPR43 and Energy Metabolism.
Front Endocrinol (Lausanne). 2014 Jun 5;5:85. doi: 10.3389/fendo.2014.00085. eCollection 2014.
2
Receptors for short-chain fatty acids in brush cells at the "gastric groove".
Front Physiol. 2014 Apr 16;5:152. doi: 10.3389/fphys.2014.00152. eCollection 2014.
5
Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure.
Virology. 2014 Apr;454-455:328-39. doi: 10.1016/j.virol.2014.02.008. Epub 2014 Feb 22.
7
Reactivation of latent HIV-1 in central memory CD4⁺ T cells through TLR-1/2 stimulation.
Retrovirology. 2013 Oct 24;10:119. doi: 10.1186/1742-4690-10-119.
9
HIV-1 transcription and latency: an update.
Retrovirology. 2013 Jun 26;10:67. doi: 10.1186/1742-4690-10-67.
10
Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes.
PLoS Pathog. 2013;9(5):e1003338. doi: 10.1371/journal.ppat.1003338. Epub 2013 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验