文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

丁酸盐通过组蛋白去乙酰化酶 (HDAC) 抑制和 GPR43 信号直接降低人类肠道固有层 CD4 T 细胞的功能。

Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling.

机构信息

Department of Medicine, Division of Infectious Disease, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA; Department of Immunology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.

Department of Medicine, Division of Infectious Disease, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.

出版信息

Immunobiology. 2021 Sep;226(5):152126. doi: 10.1016/j.imbio.2021.152126. Epub 2021 Jul 30.


DOI:10.1016/j.imbio.2021.152126
PMID:34365090
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8478853/
Abstract

An important function of the gut microbiome is the fermentation of non-digestible dietary fibers into short chain fatty acids (SCFAs). The three primary SCFAs: acetate, propionate, and butyrate, are key mediators of metabolism and immune cell function in the gut mucosa. We previously demonstrated that butyrate at high concentrations decreased human gut lamina propria (LP) CD4 T cell activation in response to enteric bacteria exposure in vitro. However, to date, the mechanism by which butyrate alters human gut LP CD4 T cell activation remains unknown. In this current study, we sought to better understand how exposure to SCFAs across a concentration range impacted human gut LP CD4 T cell function and activation. LP CD4 T cells were directly activated with T cell receptor (TCR) beads in vitro in the presence of a physiologic concentration range of each of the primary SCFAs. Exposure to butyrate potently inhibited CD4 T cell activation, proliferation, and cytokine (IFNγ, IL-17) production in a concentration dependent manner. Butyrate decreased the proliferation and cytokine production of T helper (Th) 1, Th17 and Th22 cells, with differences noted in the sensitivity of LP versus peripheral blood Th cells to butyrate's effects. Higher concentrations of propionate and acetate relative to butyrate were required to inhibit CD4 T cell activation and proliferation. Butyrate directly increased the acetylation of both unstimulated and TCR-stimulated CD4 T cells, and apicidin, a Class I histone deacetylase inhibitor, phenocopied butyrate's effects on CD4 T cell proliferation and activation. GPR43 agonism phenocopied butyrate's effect on CD4 T cell proliferation whereas a GPR109a agonist did not. Our findings indicate that butyrate decreases in vitro human gut LP CD4 T cell activation, proliferation, and inflammatory cytokine production more potently than other SCFAs, likely through butyrate's ability to increase histone acetylation, and potentially via signaling through GPR43. These findings have relevance in furthering our understanding of how perturbations of the gut microbiome alter local immune responses in the gut mucosa.

摘要

肠道微生物群的一个重要功能是将不可消化的膳食纤维发酵成短链脂肪酸(SCFAs)。三种主要的 SCFAs:乙酸盐、丙酸盐和丁酸盐,是肠道黏膜代谢和免疫细胞功能的关键介质。我们之前的研究表明,高浓度的丁酸盐可降低体外暴露于肠道细菌时人肠道固有层(LP)CD4 T 细胞的激活。然而,迄今为止,丁酸盐改变人肠道 LP CD4 T 细胞激活的机制尚不清楚。在本研究中,我们试图更好地了解 SCFAs 在浓度范围内如何影响人肠道 LP CD4 T 细胞的功能和激活。LP CD4 T 细胞在体外通过 T 细胞受体(TCR)珠直接激活,同时存在生理浓度范围内的每种主要 SCFAs。丁酸盐以浓度依赖的方式强烈抑制 CD4 T 细胞的激活、增殖和细胞因子(IFNγ、IL-17)的产生。丁酸盐降低了 Th1、Th17 和 Th22 细胞的增殖和细胞因子产生,LP 与外周血 Th 细胞对丁酸盐作用的敏感性存在差异。与丁酸盐相比,需要更高浓度的丙酸盐和乙酸盐才能抑制 CD4 T 细胞的激活和增殖。丁酸盐直接增加了未刺激和 TCR 刺激的 CD4 T 细胞的乙酰化,而 Class I 组蛋白去乙酰化酶抑制剂 apicidin 模拟了丁酸盐对 CD4 T 细胞增殖和激活的作用。GPR43 激动剂模拟了丁酸盐对 CD4 T 细胞增殖的作用,而 GPR109a 激动剂则没有。我们的研究结果表明,丁酸盐比其他 SCFAs 更有效地降低体外人肠道 LP CD4 T 细胞的激活、增殖和炎症细胞因子的产生,这可能是由于丁酸盐增加组蛋白乙酰化的能力,并且可能通过 GPR43 信号传递。这些发现对于进一步了解肠道微生物组的改变如何改变肠道黏膜中的局部免疫反应具有重要意义。

相似文献

[1]
Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling.

Immunobiology. 2021-9

[2]
Short-chain fatty acids exert opposite effects on the expression and function of p-glycoprotein and breast cancer resistance protein in rat intestine.

Acta Pharmacol Sin. 2021-3

[3]
Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells.

Biomed Pharmacother. 2010-12

[4]
Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways.

Nutrition. 2009-12-8

[5]
Short-chain fatty acids inhibit the activation of T lymphocytes and myeloid cells and induce innate immune tolerance.

Benef Microbes. 2023-9-1

[6]
Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4 T Cells.

J Virol. 2017-7-27

[7]
Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells.

J Anim Sci. 2018-12-3

[8]
Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate.

Front Immunol. 2018-1-29

[9]
Induction of the apoptosis, degranulation and IL-13 production of human basophils by butyrate and propionate via suppression of histone deacetylation.

Immunology. 2021-10

[10]
Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice.

Gastroenterology. 2013-5-7

引用本文的文献

[1]
Th17 cell pathogenicity in autoimmune disease.

Exp Mol Med. 2025-9-1

[2]
The novel organoselenium compound 4aa ameliorates osteoporosis by modulating gut microbiota composition and fecal metabolite profiles.

Front Endocrinol (Lausanne). 2025-8-13

[3]
Gut Microbiome Signatures in Multiple Sclerosis: A Case-Control Study with Machine Learning and Global Data Integration.

Biomedicines. 2025-7-23

[4]
Gut-lung axis in allergic asthma: microbiota-driven immune dysregulation and therapeutic strategies.

Front Pharmacol. 2025-7-31

[5]
Gut Microbiota-Derived Acetate Ameliorates Endometriosis via JAK1/STAT3-Mediated M1 Macrophage Polarisation.

Microb Biotechnol. 2025-8

[6]
The Anti-Inflammatory, Immunomodulatory, and Pro-Autophagy Activities of Probiotics for Colorectal Cancer Prevention and Treatment: A Narrative Review.

Biomedicines. 2025-6-25

[7]
Gut microbiota and SCFAs improve the treatment efficacy of chemotherapy and immunotherapy in NSCLC.

NPJ Biofilms Microbiomes. 2025-7-28

[8]
Exploring the influence of gut microbiota metabolites on vitiligo through the gut-skin axis.

Front Microbiol. 2025-7-9

[9]
Targeting the brain-gut-prostate axis in chronic prostatitis: mechanisms and therapeutics.

Front Endocrinol (Lausanne). 2025-7-4

[10]
Tripartite interplay: immune reconstitution dynamics in AIDS, gut microbiota, and Helicobacter pylori infection: current advances and therapeutic prospects.

Gut Pathog. 2025-7-3

本文引用的文献

[1]
Role of HCA in Regulating Intestinal Homeostasis and Suppressing Colon Carcinogenesis.

Front Immunol. 2021

[2]
Quantifying HIV-1-Mediated Gut CD4 T Cell Deathin the Lamina Propria Aggregate Culture (LPAC) Model.

Bio Protoc. 2020-1-20

[3]
CD147 Expressed on Memory CD4 T Cells Limits Th17 Responses in Patients With Rheumatoid Arthritis.

Front Immunol. 2020

[4]
Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine.

Annu Rev Immunol. 2020-4-26

[5]
Age-related alterations in human gut CD4 T cell phenotype, T helper cell frequencies, and functional responses to enteric bacteria.

J Leukoc Biol. 2019-10-1

[6]
Systematic Review and Meta-analysis: Short-Chain Fatty Acid Characterization in Patients With Inflammatory Bowel Disease.

Inflamm Bowel Dis. 2019-10-18

[7]
Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells.

Eur J Immunol. 2019-5-17

[8]
Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases.

Front Immunol. 2019-3-11

[9]
Regulation of the effector function of CD8 T cells by gut microbiota-derived metabolite butyrate.

Sci Rep. 2018-9-26

[10]
Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis.

Nat Commun. 2018-9-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索