Suppr超能文献

GPI-80 定义了人类发育过程中造血干细胞的自我更新能力。

GPI-80 defines self-renewal ability in hematopoietic stem cells during human development.

作者信息

Prashad Sacha Leandra, Calvanese Vincenzo, Yao Catherine Yao, Kaiser Joshua, Wang Yanling, Sasidharan Rajkumar, Crooks Gay, Magnusson Mattias, Mikkola Hanna Katri Annikki

机构信息

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Cell Stem Cell. 2015 Jan 8;16(1):80-7. doi: 10.1016/j.stem.2014.10.020. Epub 2014 Nov 13.

Abstract

Advances in pluripotent stem cell and reprogramming technologies have given us the hope of generating hematopoietic stem cells (HSCs) in culture. To succeed, greater understanding of the self-renewing HSC during human development is required. We discovered that the glycophosphatidylinositol-anchored surface protein GPI-80 defines a subpopulation of human fetal liver hematopoietic stem/progenitor cells (HSPCs) with self-renewal ability. CD34(+)CD38(lo/-)CD90(+)GPI-80(+) HSPCs were the sole population that maintained proliferative potential and an undifferentiated state in stroma coculture and engrafted in immunodeficient mice. GPI-80 expression also enabled tracking of HSPCs once they emerged from endothelium and migrated between human fetal hematopoietic niches. GPI-80 colocalized on the surface of HSPCs with Integrin alpha-M (ITGAM), which in leukocytes cooperates with GPI-80 to support migration. Knockdown of GPI-80 or ITGAM was sufficient to compromise HSPC expansion in culture and engraftment in vivo. These findings indicate that human fetal HSCs employ mechanisms used in leukocyte adhesion and migration to mediate HSC self-renewal.

摘要

多能干细胞和重编程技术的进展让我们有望在体外培养中生成造血干细胞(HSC)。要取得成功,需要更深入地了解人类发育过程中自我更新的造血干细胞。我们发现,糖基磷脂酰肌醇锚定表面蛋白GPI-80定义了具有自我更新能力的人类胎儿肝脏造血干/祖细胞(HSPC)亚群。CD34(+)CD38(lo/-)CD90(+)GPI-80(+) HSPC是唯一在基质共培养中保持增殖潜力和未分化状态并能植入免疫缺陷小鼠体内的细胞群体。一旦HSPC从内皮细胞中出现并在人类胎儿造血微环境之间迁移,GPI-80表达还能对其进行追踪。GPI-80与整合素α-M(ITGAM)在HSPC表面共定位,在白细胞中,ITGAM与GPI-80协同支持迁移。敲低GPI-80或ITGAM足以损害HSPC在培养中的扩增以及在体内的植入。这些发现表明,人类胎儿造血干细胞利用白细胞黏附和迁移中使用的机制来介导造血干细胞自我更新。

相似文献

1
GPI-80 defines self-renewal ability in hematopoietic stem cells during human development.
Cell Stem Cell. 2015 Jan 8;16(1):80-7. doi: 10.1016/j.stem.2014.10.020. Epub 2014 Nov 13.
2
In search of human hematopoietic stem cell identity.
Cell Stem Cell. 2015 Jan 8;16(1):5-6. doi: 10.1016/j.stem.2014.12.010.
3
Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells.
Cell Mol Immunol. 2016 Sep;13(5):605-14. doi: 10.1038/cmi.2015.40. Epub 2015 May 25.
5
Medial HOXA genes demarcate haematopoietic stem cell fate during human development.
Nat Cell Biol. 2016 Jun;18(6):595-606. doi: 10.1038/ncb3354. Epub 2016 May 16.
9
Different Human Immune Lineage Compositions Are Generated in Non-Conditioned NBSGW Mice Depending on HSPC Source.
Front Immunol. 2020 Oct 19;11:573406. doi: 10.3389/fimmu.2020.573406. eCollection 2020.

引用本文的文献

2
MYCT1 controls environmental sensing in human haematopoietic stem cells.
Nature. 2024 Jun;630(8016):412-420. doi: 10.1038/s41586-024-07478-x. Epub 2024 Jun 5.
4
Hematopoietic Stem Cell Development in Mammalian Embryos.
Adv Exp Med Biol. 2023;1442:1-16. doi: 10.1007/978-981-99-7471-9_1.
5
The genesis of human hematopoietic stem cells.
Blood. 2023 Aug 10;142(6):519-532. doi: 10.1182/blood.2022017934.
6
Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage.
Exp Hematol. 2023 Jul;123:1-17. doi: 10.1016/j.exphem.2023.05.001. Epub 2023 May 10.
7
The essential roles of small non-coding RNAs and RNA modifications in normal and malignant hematopoiesis.
Front Mol Biosci. 2023 Mar 31;10:1176416. doi: 10.3389/fmolb.2023.1176416. eCollection 2023.
8
MAC-1 marks a quiescent and functionally superior HSC subset during regeneration.
Stem Cell Reports. 2023 Mar 14;18(3):736-748. doi: 10.1016/j.stemcr.2023.01.014. Epub 2023 Mar 2.
9
Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function.
Front Physiol. 2022 Sep 30;13:1009160. doi: 10.3389/fphys.2022.1009160. eCollection 2022.
10
The emergence of the stem cell niche.
Trends Cell Biol. 2023 Feb;33(2):112-123. doi: 10.1016/j.tcb.2022.07.003. Epub 2022 Aug 4.

本文引用的文献

1
Umbilical cord blood: an evolving stem cell source for sickle cell disease transplants.
Stem Cells Transl Med. 2013 May;2(5):337-40. doi: 10.5966/sctm.2012-0180. Epub 2013 Apr 11.
4
The transcriptional landscape of hematopoietic stem cell ontogeny.
Cell Stem Cell. 2012 Nov 2;11(5):701-14. doi: 10.1016/j.stem.2012.07.018.
6
Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region.
J Exp Med. 2011 Nov 21;208(12):2417-27. doi: 10.1084/jem.20111688. Epub 2011 Oct 31.
7
The challenges and promises of blood engineered from human pluripotent stem cells.
Adv Drug Deliv Rev. 2011 Apr 30;63(4-5):331-41. doi: 10.1016/j.addr.2010.12.006. Epub 2011 Jan 11.
8
Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers.
Blood. 2011 Feb 3;117(5):1550-4. doi: 10.1182/blood-2009-03-212803. Epub 2010 Dec 16.
9
Embryonic origin of human hematopoiesis.
Int J Dev Biol. 2010;54(6-7):1061-5. doi: 10.1387/ijdb.103097mt.
10
The first trimester human placenta is a site for terminal maturation of primitive erythroid cells.
Blood. 2010 Oct 28;116(17):3321-30. doi: 10.1182/blood-2010-04-279489. Epub 2010 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验