Suppr超能文献

分枝杆菌噬菌体“耐心”的基因组学和蛋白质组学,一位在分枝杆菌群落中的意外访客。

Genomics and proteomics of mycobacteriophage patience, an accidental tourist in the Mycobacterium neighborhood.

作者信息

Pope Welkin H, Jacobs-Sera Deborah, Russell Daniel A, Rubin Daniel H F, Kajee Afsana, Msibi Zama N P, Larsen Michelle H, Jacobs William R, Lawrence Jeffrey G, Hendrix Roger W, Hatfull Graham F

机构信息

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Harvard College, Cambridge, Massachusetts, USA.

出版信息

mBio. 2014 Dec 2;5(6):e02145. doi: 10.1128/mBio.02145-14.

Abstract

UNLABELLED

Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc(2)155 as a host. Patience has genomic features distinct from its M. smegmatis host, including a much lower GC content (50.3% versus 67.4%) and an abundance of codons that are rarely used in M. smegmatis. Nonetheless, it propagates well in M. smegmatis, and we demonstrate the use of mass spectrometry to show expression of over 75% of the predicted proteins, to identify new genes, to refine the genome annotation, and to estimate protein abundance. We propose that Patience evolved primarily among lower-GC hosts and that the disparities between its genomic profile and that of M. smegmatis presented only a minimal barrier to host expansion. Rapid adaptions to its new host include recent acquisition of higher-GC genes, expression of out-of-frame proteins within predicted genes, and codon selection among highly expressed genes toward the translational apparatus of its new host.

IMPORTANCE

The mycobacteriophage Patience genome has a notably lower GC content (50.3%) than its Mycobacterium smegmatis host (67.4%) and has markedly different codon usage biases. The viral genome has an abundance of codons that are rare in the host and are decoded by wobble tRNA pairing, although the phage grows well and expression of most of the genes is detected by mass spectrometry. Patience thus has the genomic profile of a virus that evolved primarily in one type of host genetic landscape (moderate-GC bacteria) but has found its way into a distinctly different high-GC environment. Although Patience genes are ill matched to the host expression apparatus, this is of little functional consequence and has not evidently imposed a barrier to migration across the microbial landscape. Interestingly, comparison of expression levels and codon usage profiles reveals evidence of codon selection as the genome evolves and adapts to its new environment.

摘要

未加标注

新出现的人类病毒,如埃博拉病毒、严重急性呼吸综合征(SARS)病毒和艾滋病毒,可能起源于非人类宿主中现存的病毒群体,并获得了感染人类并导致疾病的能力。尽管已经描述了几种阻止特定宿主感染病毒的机制,但病毒宿主范围扩展的机制和限制仍不明确。我们在此描述分枝杆菌噬菌体“耐心”,这是一种新分离的噬菌体,以耻垢分枝杆菌mc(2)155作为宿主回收得到。“耐心”具有与其耻垢分枝杆菌宿主不同的基因组特征,包括更低的GC含量(50.3%对67.4%)以及大量在耻垢分枝杆菌中很少使用的密码子。尽管如此,它在耻垢分枝杆菌中繁殖良好,并且我们展示了使用质谱法来显示超过75%的预测蛋白的表达,识别新基因,完善基因组注释以及估计蛋白丰度。我们提出“耐心”主要在低GC含量的宿主中进化,并且其基因组图谱与耻垢分枝杆菌的差异仅对宿主范围扩展构成了最小的障碍。对其新宿主的快速适应包括最近获得更高GC含量的基因,在预测基因内表达移码蛋白,以及在高表达基因中朝着其新宿主的翻译装置进行密码子选择。

重要性

分枝杆菌噬菌体“耐心”的基因组GC含量(50.3%)明显低于其耻垢分枝杆菌宿主(67.4%),并且具有明显不同的密码子使用偏好。病毒基因组中有大量在宿主中罕见的密码子,通过摆动tRNA配对进行解码,尽管噬菌体生长良好并且通过质谱法检测到大多数基因的表达。因此,“耐心”具有一种病毒的基因组图谱,该病毒主要在一种类型的宿主遗传环境(中等GC含量细菌)中进化,但已进入明显不同的高GC含量环境。尽管 “耐心” 的基因与宿主表达装置不匹配,但这在功能上几乎没有影响,并且显然没有对跨越微生物环境构成障碍。有趣的是,表达水平和密码子使用图谱的比较揭示了随着基因组进化并适应新环境而进行密码子选择的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d7/4324244/00014a052e76/mbo0061420760001.jpg

相似文献

2
Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias.
Microb Genom. 2016 Oct 21;2(10):e000079. doi: 10.1099/mgen.0.000079. eCollection 2016 Oct.
3
A mycobacteriophage genomics approach to identify novel mycobacteriophage proteins with mycobactericidal properties.
Microbiology (Reading). 2019 Jul;165(7):722-736. doi: 10.1099/mic.0.000810. Epub 2019 May 15.
4
Genomic and proteomic features of mycobacteriophage SWU1 isolated from China soil.
Gene. 2015 Apr 25;561(1):45-53. doi: 10.1016/j.gene.2015.02.053. Epub 2015 Feb 19.
5
Cluster M mycobacteriophages Bongo, PegLeg, and Rey with unusually large repertoires of tRNA isotypes.
J Virol. 2014 Mar;88(5):2461-80. doi: 10.1128/JVI.03363-13. Epub 2013 Dec 11.
6
Weirdo19ES is a novel singleton mycobacteriophage that selects for glycolipid deficient phage-resistant M. smegmatis mutants.
PLoS One. 2020 May 1;15(5):e0231881. doi: 10.1371/journal.pone.0231881. eCollection 2020.
7
Mycobacteriophage Marvin: a new singleton phage with an unusual genome organization.
J Virol. 2012 May;86(9):4762-75. doi: 10.1128/JVI.00075-12. Epub 2012 Feb 22.
8
Comparative analysis of the base composition and codon usages in fourteen mycobacteriophage genomes.
J Biomol Struct Dyn. 2005 Aug;23(1):63-71. doi: 10.1080/07391102.2005.10507047.
9
Complete genome sequence analysis of the novel mycobacteriophage Shandong1.
Arch Virol. 2017 Dec;162(12):3903-3905. doi: 10.1007/s00705-017-3534-7. Epub 2017 Aug 21.

引用本文的文献

1
Whole-genome sequence of subcluster BE1 bacteriophage Persimmon.
Microbiol Resour Announc. 2025 Jun 12;14(6):e0002425. doi: 10.1128/mra.00024-25. Epub 2025 Apr 29.
2
5
A Brief History of Phage Research and Teaching in Africa.
Phage (New Rochelle). 2022 Dec 1;3(4):184-193. doi: 10.1089/phage.2022.29037.inp. Epub 2022 Dec 19.
6
Phage Commander, an Application for Rapid Gene Identification in Bacteriophage Genomes Using Multiple Programs.
Phage (New Rochelle). 2021 Dec 1;2(4):204-213. doi: 10.1089/phage.2020.0044. Epub 2021 Dec 16.
7
The transcriptional regulator CtrA controls gene expression in Alphaproteobacteria phages: Evidence for a lytic deferment pathway.
Front Microbiol. 2022 Aug 19;13:918015. doi: 10.3389/fmicb.2022.918015. eCollection 2022.
10
Actinobacteriophages: Genomics, Dynamics, and Applications.
Annu Rev Virol. 2020 Sep 29;7(1):37-61. doi: 10.1146/annurev-virology-122019-070009.

本文引用的文献

2
HNH proteins are a widespread component of phage DNA packaging machines.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6022-7. doi: 10.1073/pnas.1320952111. Epub 2014 Apr 7.
3
Cluster M mycobacteriophages Bongo, PegLeg, and Rey with unusually large repertoires of tRNA isotypes.
J Virol. 2014 Mar;88(5):2461-80. doi: 10.1128/JVI.03363-13. Epub 2013 Dec 11.
4
Complete genome sequences of 63 mycobacteriophages.
Genome Announc. 2013 Nov 27;1(6):e00847-13. doi: 10.1128/genomeA.00847-13.
5
Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.
Microb Ecol. 2014 Feb;67(2):242-4. doi: 10.1007/s00248-013-0325-x. Epub 2013 Nov 20.
6
High-resolution view of bacteriophage lambda gene expression by ribosome profiling.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11928-33. doi: 10.1073/pnas.1309739110. Epub 2013 Jun 28.
7
Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles.
Mol Microbiol. 2013 May;88(3):577-89. doi: 10.1111/mmi.12210. Epub 2013 Apr 8.
8
On the nature of mycobacteriophage diversity and host preference.
Virology. 2012 Dec 20;434(2):187-201. doi: 10.1016/j.virol.2012.09.026. Epub 2012 Oct 22.
9
Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities.
PLoS One. 2012;7(3):e34052. doi: 10.1371/journal.pone.0034052. Epub 2012 Mar 28.
10
The secret lives of mycobacteriophages.
Adv Virus Res. 2012;82:179-288. doi: 10.1016/B978-0-12-394621-8.00015-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验