Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
J Neurooncol. 2024 Jan;166(1):167-174. doi: 10.1007/s11060-023-04540-y. Epub 2023 Dec 22.
This paper presents a deep learning model for use in the automated segmentation of metastatic brain tumors and associated perilesional edema.
The model was trained using Gamma Knife surgical data (90 MRI sets from 46 patients), including the initial treatment plan and follow-up images (T1-weighted contrast-enhanced (T1cWI) and T2-weighted images (T2WI)) manually annotated by neurosurgeons to indicate the target tumor and edema regions. A mask region-based convolutional neural network was used to extract brain parenchyma, after which the DeepMedic 3D convolutional neural network was in the segmentation of tumors and edemas.
Five-fold cross-validation demonstrated the efficacy of the brain parenchyma extraction model, achieving a Dice similarity coefficient of 96.4%. The segmentation models used for metastatic tumors and brain edema achieved Dice similarity coefficients of 71.6% and 85.1%, respectively. This study also presents an intuitive graphical user interface to facilitate the use of these models in clinical analysis.
This paper introduces a deep learning model for the automated segmentation and quantification of brain metastatic tumors and perilesional edema trained using only T1cWI and T2WI. This technique could facilitate further research on metastatic tumors and perilesional edema as well as other intracranial lesions.
本文提出了一种深度学习模型,用于自动分割转移性脑肿瘤及其周围水肿。
该模型使用伽玛刀手术数据(46 名患者的 90 个 MRI 集)进行训练,包括初始治疗计划和随访图像(神经外科医生手动标注的 T1 加权对比增强(T1cWI)和 T2 加权图像(T2WI)),以指示靶肿瘤和水肿区域。采用基于掩模区域的卷积神经网络提取脑实质,然后使用 DeepMedic 3D 卷积神经网络对肿瘤和水肿进行分割。
五重交叉验证证明了脑实质提取模型的有效性,其 Dice 相似系数达到 96.4%。转移性肿瘤和脑水肿的分割模型的 Dice 相似系数分别为 71.6%和 85.1%。本研究还提出了一个直观的图形用户界面,以方便这些模型在临床分析中的应用。
本文提出了一种仅使用 T1cWI 和 T2WI 训练的用于自动分割和量化脑转移瘤和瘤周水肿的深度学习模型。该技术可以促进对转移性肿瘤和瘤周水肿以及其他颅内病变的进一步研究。