Bernardi Davide, Lindner Benjamin
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; and Physics Department, Humboldt University Berlin, Berlin, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; and Physics Department, Humboldt University Berlin, Berlin, Germany
J Neurophysiol. 2015 Mar 1;113(5):1342-57. doi: 10.1152/jn.00354.2014. Epub 2014 Dec 4.
The encoding and processing of time-dependent signals into sequences of action potentials of sensory neurons is still a challenging theoretical problem. Although, with some effort, it is possible to quantify the flow of information in the model-free framework of Shannon's information theory, this yields just a single number, the mutual information rate. This rate does not indicate which aspects of the stimulus are encoded. Several studies have identified mechanisms at the cellular and network level leading to low- or high-pass filtering of information, i.e., the selective coding of slow or fast stimulus components. However, these findings rely on an approximation, specifically, on the qualitative behavior of the coherence function, an approximate frequency-resolved measure of information flow, whose quality is generally unknown. Here, we develop an assumption-free method to measure a frequency-resolved information rate about a time-dependent Gaussian stimulus. We demonstrate its application for three paradigmatic descriptions of neural firing: an inhomogeneous Poisson process that carries a signal in its instantaneous firing rate; an integrator neuron (stochastic integrate-and-fire model) driven by a time-dependent stimulus; and the synchronous spikes fired by two commonly driven integrator neurons. In agreement with previous coherence-based estimates, we find that Poisson and integrate-and-fire neurons are broadband and low-pass filters of information, respectively. The band-pass information filtering observed in the coherence of synchronous spikes is confirmed by our frequency-resolved information measure in some but not all parameter configurations. Our results also explicitly show how the response-response coherence can fail as an upper bound on the information rate.
将随时间变化的信号编码并处理为感觉神经元动作电位序列仍然是一个具有挑战性的理论问题。尽管通过一些努力,可以在香农信息论的无模型框架中量化信息流,但这只能得出一个单一的数字,即互信息率。这个比率并不能表明刺激的哪些方面被编码了。几项研究已经在细胞和网络层面确定了导致信息低通或高通滤波的机制,即对缓慢或快速刺激成分的选择性编码。然而,这些发现依赖于一种近似,具体来说,依赖于相干函数的定性行为,相干函数是一种对信息流的近似频率分辨度量,其质量通常是未知的。在这里,我们开发了一种无假设方法来测量关于随时间变化的高斯刺激的频率分辨信息率。我们展示了它在神经放电的三种典型描述中的应用:一种在其瞬时放电率中携带信号的非齐次泊松过程;一个由随时间变化的刺激驱动的积分神经元(随机积分发放模型);以及由两个共同驱动的积分神经元同步发放的尖峰。与先前基于相干性的估计一致,我们发现泊松神经元和积分发放神经元分别是信息的宽带和低通滤波器。在同步尖峰的相干性中观察到的带通信息滤波在我们的频率分辨信息度量中在一些但不是所有参数配置下得到了证实。我们的结果还明确表明了响应 - 响应相干性作为信息率上限是如何失效的。