Suppr超能文献

通过同步群体输出的巧合检测进行信息过滤:两阶段神经系统相干函数的分析方法。

Information filtering by coincidence detection of synchronous population output: analytical approaches to the coherence function of a two-stage neural system.

机构信息

Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489, Berlin, Germany.

Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115, Berlin, Germany.

出版信息

Biol Cybern. 2020 Jun;114(3):403-418. doi: 10.1007/s00422-020-00838-6. Epub 2020 Jun 24.

Abstract

Information about time-dependent sensory stimuli is encoded in the activity of neural populations; distinct aspects of the stimulus are read out by different types of neurons: while overall information is perceived by integrator cells, so-called coincidence detector cells are driven mainly by the synchronous activity in the population that encodes predominantly high-frequency content of the input signal (high-pass information filtering). Previously, an analytically accessible statistic called the partial synchronous output was introduced as a proxy for the coincidence detector cell's output in order to approximate its information transmission. In the first part of the current paper, we compare the information filtering properties (specifically, the coherence function) of this proxy to those of a simple coincidence detector neuron. We show that the latter's coherence function can indeed be well-approximated by the partial synchronous output with a time scale and threshold criterion that are related approximately linearly to the membrane time constant and firing threshold of the coincidence detector cell. In the second part of the paper, we propose an alternative theory for the spectral measures (including the coherence) of the coincidence detector cell that combines linear-response theory for shot-noise driven integrate-and-fire neurons with a novel perturbation ansatz for the spectra of spike-trains driven by colored noise. We demonstrate how the variability of the synaptic weights for connections from the population to the coincidence detector can shape the information transmission of the entire two-stage system.

摘要

有关时变感觉刺激的信息编码在神经元群体的活动中;刺激的不同方面由不同类型的神经元读出:虽然整体信息由积分器细胞感知,但所谓的巧合检测细胞主要由编码输入信号主要高频内容的群体同步活动驱动(高通滤波信息)。以前,引入了一种可分析的统计量,称为部分同步输出,作为近似巧合检测细胞输出的代理,以近似其信息传输。在当前论文的第一部分,我们将这个代理的信息滤波特性(特别是相干函数)与简单的巧合检测神经元进行了比较。我们表明,后者的相干函数确实可以用部分同步输出很好地近似,其时间尺度和阈值准则与巧合检测细胞的膜时间常数和触发阈值近似呈线性关系。在论文的第二部分,我们提出了一种用于巧合检测细胞的谱测度(包括相干性)的替代理论,该理论将驱动整合-点火神经元的噪声驱动线性响应理论与一种新的用于有色噪声驱动的尖峰序列谱的微扰假设相结合。我们演示了来自群体到巧合检测的连接的突触权重的可变性如何影响整个两级系统的信息传输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b767/7326833/11a9ca031bd3/422_2020_838_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验