Suppr超能文献

神经群体中同步尖峰进行的信息过滤

Information filtering by synchronous spikes in a neural population.

作者信息

Sharafi Nahal, Benda Jan, Lindner Benjamin

机构信息

Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany.

出版信息

J Comput Neurosci. 2013 Apr;34(2):285-301. doi: 10.1007/s10827-012-0421-9. Epub 2012 Sep 12.

Abstract

Information about time-dependent sensory stimuli is encoded by the spike trains of neurons. Here we consider a population of uncoupled but noisy neurons (each subject to some intrinsic noise) that are driven by a common broadband signal. We ask specifically how much information is encoded in the synchronous activity of the population and how this information transfer is distributed with respect to frequency bands. In order to obtain some insight into the mechanism of information filtering effects found previously in the literature, we develop a mathematical framework to calculate the coherence of the synchronous output with the common stimulus for populations of simple neuron models. Within this frame, the synchronous activity is treated as the product of filtered versions of the spike trains of a subset of neurons. We compare our results for the simple cases of (1) a Poisson neuron with a rate modulation and (2) an LIF neuron with intrinsic white current noise and a current stimulus. For the Poisson neuron, formulas are particularly simple but show only a low-pass behavior of the coherence of synchronous activity. For the LIF model, in contrast, the coherence function of the synchronous activity shows a clear peak at high frequencies, comparable to recent experimental findings. We uncover the mechanism for this shift in the maximum of the coherence and discuss some biological implications of our findings.

摘要

关于随时间变化的感觉刺激的信息由神经元的脉冲序列编码。在这里,我们考虑一群未耦合但有噪声的神经元(每个神经元都受到一些内在噪声的影响),它们由一个共同的宽带信号驱动。我们具体询问在群体的同步活动中编码了多少信息,以及这种信息传递是如何相对于频带分布的。为了深入了解先前文献中发现的信息过滤效应的机制,我们开发了一个数学框架来计算简单神经元模型群体的同步输出与共同刺激之间的相干性。在此框架内,同步活动被视为神经元子集中脉冲序列的滤波版本的乘积。我们比较了(1)具有速率调制的泊松神经元和(2)具有内在白电流噪声和电流刺激的LIF神经元这两种简单情况的结果。对于泊松神经元,公式特别简单,但仅显示出同步活动相干性的低通行为。相比之下,对于LIF模型,同步活动的相干函数在高频处显示出明显的峰值,这与最近的实验结果相当。我们揭示了相干性最大值发生这种变化的机制,并讨论了我们研究结果的一些生物学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19c0/3605500/a8130ef9f509/10827_2012_421_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验