Suppr超能文献

铁稳态与肿瘤发生:分子机制与治疗机遇

Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities.

作者信息

Zhang Caiguo, Zhang Fan

机构信息

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,

出版信息

Protein Cell. 2015 Feb;6(2):88-100. doi: 10.1007/s13238-014-0119-z. Epub 2014 Dec 6.

Abstract

Excess iron is tightly associated with tumorigenesis in multiple human cancer types through a variety of mechanisms including catalyzing the formation of mutagenic hydroxyl radicals, regulating DNA replication, repair and cell cycle progression, affecting signal transduction in cancer cells, and acting as an essential nutrient for proliferating tumor cells. Thus, multiple therapeutic strategies based on iron deprivation have been developed in cancer therapy. During the past few years, our understanding of genetic association and molecular mechanisms between iron and tumorigenesis has expanded enormously. In this review, we briefly summarize iron homeostasis in mammals, and discuss recent progresses in understanding the aberrant iron metabolism in numerous cancer types, with a focus on studies revealing altered signal transduction in cancer cells.

摘要

过量铁通过多种机制与多种人类癌症类型的肿瘤发生紧密相关,这些机制包括催化诱变羟基自由基的形成、调节DNA复制、修复和细胞周期进程、影响癌细胞中的信号转导,以及作为增殖肿瘤细胞的必需营养素。因此,癌症治疗中已开发出多种基于铁剥夺的治疗策略。在过去几年中,我们对铁与肿瘤发生之间的遗传关联和分子机制的理解有了极大的扩展。在这篇综述中,我们简要总结了哺乳动物中的铁稳态,并讨论了在理解多种癌症类型中铁代谢异常方面的最新进展,重点是揭示癌细胞中信号转导改变的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5073/4312762/382a12cd1201/13238_2014_119_Fig1_HTML.jpg

相似文献

1
Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities.
Protein Cell. 2015 Feb;6(2):88-100. doi: 10.1007/s13238-014-0119-z. Epub 2014 Dec 6.
2
A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells.
Semin Cancer Biol. 2018 Dec;53:125-138. doi: 10.1016/j.semcancer.2018.07.009. Epub 2018 Jul 30.
3
Protein lysine acetylation guards metabolic homeostasis to fight against cancer.
Oncogene. 2014 May 1;33(18):2279-85. doi: 10.1038/onc.2013.163. Epub 2013 May 13.
4
Macrophage iron homeostasis and polarization in the context of cancer.
Immunobiology. 2015 Feb;220(2):295-304. doi: 10.1016/j.imbio.2014.09.011. Epub 2014 Sep 16.
5
and Its Potential Influence on Key Oncogenic Pathways.
Cells. 2024 Jun 26;13(13):1109. doi: 10.3390/cells13131109.
6
Metabolic alteration in tumorigenesis.
Sci China Life Sci. 2013 Dec;56(12):1067-75. doi: 10.1007/s11427-013-4549-2. Epub 2013 Oct 10.
7
p53 tumor suppressor and iron homeostasis.
FEBS J. 2019 Feb;286(4):620-629. doi: 10.1111/febs.14638. Epub 2018 Sep 4.
8
The dark side of ZNF217, a key regulator of tumorigenesis with powerful biomarker value.
Oncotarget. 2015 Dec 8;6(39):41566-81. doi: 10.18632/oncotarget.5893.
9
Iron homeostasis in breast cancer.
Cancer Lett. 2014 May 28;347(1):1-14. doi: 10.1016/j.canlet.2014.01.029. Epub 2014 Jan 31.
10
Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism.
Mol Cells. 2015 Sep;38(9):750-8. doi: 10.14348/molcells.2015.0167. Epub 2015 Sep 18.

引用本文的文献

1
Carnitine Shuttle and Ferroptosis in Cancer.
Antioxidants (Basel). 2025 Aug 8;14(8):972. doi: 10.3390/antiox14080972.
2
The solute carrier family 11 transporters: a bridge between iron homeostasis and tumor biology.
Cell Commun Signal. 2025 Jul 10;23(1):332. doi: 10.1186/s12964-025-02293-x.
3
Lactoferrin-A Regulator of Iron Homeostasis and Its Implications in Cancer.
Molecules. 2025 Mar 28;30(7):1507. doi: 10.3390/molecules30071507.
4
Iron overload mediates cytarabine resistance in AML by inhibiting the TP53 signaling pathway.
Acta Biochim Biophys Sin (Shanghai). 2025 Feb 28;57(4):646-655. doi: 10.3724/abbs.2025027.
5
Transferrin Receptor 2 in Canine Testicular Tumors: An Emerging Key Role in Seminomas.
Animals (Basel). 2025 Jan 18;15(2):264. doi: 10.3390/ani15020264.
6
Iron metabolism in a mouse model of hepatocellular carcinoma.
Sci Rep. 2025 Jan 16;15(1):2180. doi: 10.1038/s41598-025-86486-x.
7
The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook.
Clin Transl Radiat Oncol. 2024 Sep 18;49:100860. doi: 10.1016/j.ctro.2024.100860. eCollection 2024 Nov.
10
Natural products targeting ferroptosis pathways in cancer therapy (Review).
Oncol Rep. 2024 Sep;52(3). doi: 10.3892/or.2024.8782. Epub 2024 Jul 26.

本文引用的文献

1
Myeloid zinc-finger 1 (MZF-1) suppresses prostate tumor growth through enforcing ferroportin-conducted iron egress.
Oncogene. 2015 Jul;34(29):3839-47. doi: 10.1038/onc.2014.310. Epub 2014 Oct 6.
4
Regulatory effect of iron regulatory protein-2 on iron metabolism in lung cancer.
Genet Mol Res. 2014 Jul 25;13(3):5514-22. doi: 10.4238/2014.July.25.5.
5
Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control.
Protein Cell. 2014 Oct;5(10):750-60. doi: 10.1007/s13238-014-0083-7. Epub 2014 Jul 8.
6
Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: role of quercetin.
Food Chem Toxicol. 2014 Sep;71:106-15. doi: 10.1016/j.fct.2014.06.003. Epub 2014 Jun 14.
8
Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies.
Oncogene. 2015 Apr 16;34(16):2011-21. doi: 10.1038/onc.2014.155. Epub 2014 Jun 9.
10
Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition.
Front Biol (Beijing). 2014 Jan 2;9(2):104-113. doi: 10.1007/s11515-014-1302-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验