Suppr超能文献

用于耳科手术的紧凑型骨附着机器人的初步测试。

Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery.

作者信息

Dillon Neal P, Balachandran Ramya, Dit Falisse Antoine Motte, Wanna George B, Labadie Robert F, Withrow Thomas J, Fitzpatrick J Michael, Webster Robert J

机构信息

Vanderbilt University, Department of Mechanical Engineering, Nashville, Tennessee, USA.

Vanderbilt University, Department of Otolaryngology, Nashville, Tennessee, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2014 Mar 12;9036:903614. doi: 10.1117/12.2043875.

Abstract

Otologic surgery often involves a mastoidectomy procedure, in which part of the temporal bone is milled away in order to visualize critical structures embedded in the bone and safely access the middle and inner ear. We propose to automate this portion of the surgery using a compact, bone-attached milling robot. A high level of accuracy is required to avoid damage to vital anatomy along the surgical path, most notably the facial nerve, making this procedure well-suited for robotic intervention. In this study, several of the design considerations are discussed and a robot design and prototype are presented. The prototype is a 4 degrees-of-freedom robot similar to a four-axis milling machine that mounts to the patient's skull. A positioning frame, containing fiducial markers and attachment points for the robot, is rigidly attached to the skull of the patient, and a CT scan is acquired. The target bone volume is manually segmented in the CT by the surgeon and automatically converted to a milling path and robot trajectory. The robot is then attached to the positioning frame and is used to drill the desired volume. The accuracy of the entire system (image processing, planning, robot) was evaluated at several critical locations within or near the target bone volume with a mean free space accuracy result of 0.50 mm or less at all points. A milling test in a phantom material was then performed to evaluate the surgical workflow. The resulting milled volume did not violate any critical structures.

摘要

耳科手术通常涉及乳突切除术,在此过程中要磨除部分颞骨,以便看清埋于骨内的关键结构,并安全进入中耳和内耳。我们提议使用一个紧凑的、附着于骨的铣削机器人来自动化手术的这一部分。为避免在手术路径上损伤重要解剖结构,尤其是面神经,需要高精度,这使得该手术非常适合机器人干预。在本研究中,讨论了一些设计考量,并展示了一种机器人设计及原型。该原型是一个类似于四轴铣床的四自由度机器人,安装在患者颅骨上。一个包含基准标记和机器人附着点的定位框架牢固地附着于患者颅骨,然后进行CT扫描。外科医生在CT中手动分割目标骨体积,并自动将其转换为铣削路径和机器人轨迹。然后将机器人附着到定位框架上,用于钻削所需的体积。在目标骨体积内或其附近的几个关键位置评估了整个系统(图像处理、规划、机器人)的精度,所有点的平均自由空间精度结果为0.50毫米或更小。然后在模拟材料上进行铣削测试以评估手术流程。最终铣削的体积未侵犯任何关键结构。

相似文献

1
Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery.
Proc SPIE Int Soc Opt Eng. 2014 Mar 12;9036:903614. doi: 10.1117/12.2043875.
2
A Compact, Bone-Attached Robot for Mastoidectomy.
J Med Device. 2015 Sep;9(3):0310031-310037. doi: 10.1115/1.4030083.
3
Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal.
Otol Neurotol. 2017 Mar;38(3):441-447. doi: 10.1097/MAO.0000000000001324.
4
Robotic mastoidectomy.
Otol Neurotol. 2011 Jan;32(1):11-6. doi: 10.1097/MAO.0b013e3181fcee9e.
5
Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy.
Proc SPIE Int Soc Opt Eng. 2016;9786. doi: 10.1117/12.2214984. Epub 2016 Mar 18.
6
In vitro accuracy evaluation of image-guided robot system for direct cochlear access.
Otol Neurotol. 2013 Sep;34(7):1284-90. doi: 10.1097/MAO.0b013e31829561b6.
7
Incorporating Target Registration Error Into Robotic Bone Milling.
Proc SPIE Int Soc Opt Eng. 2015 Mar 18;9415. doi: 10.1117/12.2082340. Epub 2015 Feb 21.
8
An experimental evaluation of the force requirements for robotic mastoidectomy.
Otol Neurotol. 2013 Sep;34(7):e93-102. doi: 10.1097/MAO.0b013e318291c76b.
9
Semi-manual mastoidectomy assisted by human-robot collaborative control - A temporal bone replica study.
Auris Nasus Larynx. 2016 Apr;43(2):161-5. doi: 10.1016/j.anl.2015.08.008. Epub 2015 Sep 11.
10
The navigation-controlled drill in temporal bone surgery: a feasibility study.
Laryngoscope. 2007 Mar;117(3):434-41. doi: 10.1097/MLG.0b013e31802c93a1.

引用本文的文献

1
Robotic laser osteotomy through penscriptive structured light visual servoing.
Int J Comput Assist Radiol Surg. 2019 May;14(5):809-818. doi: 10.1007/s11548-018-01905-x. Epub 2019 Feb 7.
2
A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system.
Laryngoscope Investig Otolaryngol. 2017 Sep 25;2(5):208-214. doi: 10.1002/lio2.111. eCollection 2017 Oct.
3
Resection planning for robotic acoustic neuroma surgery.
J Med Imaging (Bellingham). 2017 Apr;4(2):025002. doi: 10.1117/1.JMI.4.2.025002. Epub 2017 Jun 5.
4
Incorporating Target Registration Error Into Robotic Bone Milling.
Proc SPIE Int Soc Opt Eng. 2015 Mar 18;9415. doi: 10.1117/12.2082340. Epub 2015 Feb 21.
5
A Compact, Bone-Attached Robot for Mastoidectomy.
J Med Device. 2015 Sep;9(3):0310031-310037. doi: 10.1115/1.4030083.
6
New method for identifying abnormal milling states of an otological drill.
Med Devices (Auckl). 2015 May 11;8:207-18. doi: 10.2147/MDER.S77313. eCollection 2015.

本文引用的文献

1
An experimental evaluation of the force requirements for robotic mastoidectomy.
Otol Neurotol. 2013 Sep;34(7):e93-102. doi: 10.1097/MAO.0b013e318291c76b.
2
Estimation of tool pose based on force-density correlation during robotic drilling.
IEEE Trans Biomed Eng. 2013 Apr;60(4):969-76. doi: 10.1109/TBME.2012.2235439. Epub 2012 Dec 20.
3
Design of a bone-attached parallel robot for percutaneous cochlear implantation.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2904-10. doi: 10.1109/TBME.2011.2162512. Epub 2011 Jul 22.
4
Development of an auditory implant manipulator for minimally invasive surgical insertion of implantable hearing devices.
J Laryngol Otol. 2011 Mar;125(3):262-70. doi: 10.1017/S0022215110002185. Epub 2010 Nov 16.
5
Robotic mastoidectomy.
Otol Neurotol. 2011 Jan;32(1):11-6. doi: 10.1097/MAO.0b013e3181fcee9e.
6
Accuracy evaluation of microTargeting Platforms for deep-brain stimulation using virtual targets.
IEEE Trans Biomed Eng. 2009 Jan;56(1):37-44. doi: 10.1109/TBME.2008.2002110.
8
Image-guided technique in neurotology.
Otolaryngol Clin North Am. 2007 Jun;40(3):611-24, x. doi: 10.1016/j.otc.2007.03.006.
9
Praxiteles: a miniature bone-mounted robot for minimal access total knee arthroplasty.
Int J Med Robot. 2005 Dec;1(4):67-79. doi: 10.1002/rcs.59.
10
MBARS: mini bone-attached robotic system for joint arthroplasty.
Int J Med Robot. 2005 Jan;1(2):101-21. doi: 10.1002/rcs.20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验