Suppr超能文献

将目标配准误差纳入机器人骨磨削中。

Incorporating Target Registration Error Into Robotic Bone Milling.

作者信息

Siebold Michael A, Dillon Neal P, Webster Robert J, Fitzpatrick J Michael

机构信息

Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.

Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2015 Mar 18;9415. doi: 10.1117/12.2082340. Epub 2015 Feb 21.

Abstract

Robots have been shown to be useful in assisting surgeons in a variety of bone drilling and milling procedures. Examples include commercial systems for joint repair or replacement surgeries, with in vitro feasibility recently shown for mastoidectomy. Typically, the robot is guided along a path planned on a CT image that has been registered to the physical anatomy in the operating room, which is in turn registered to the robot. The registrations often take advantage of the high accuracy of fiducial registration, but, because no real-world registration is perfect, the drill guided by the robot will inevitably deviate from its planned path. The extent of the deviation can vary from point to point along the path because of the spatial variation of target registration error. The allowable deviation can also vary spatially based on the necessary safety margin between the drill tip and various nearby anatomical structures along the path. Knowledge of the expected spatial distribution of registration error can be obtained from theoretical models or experimental measurements and used to modify the planned path. The objective of such modifications is to achieve desired probabilities for sparing specified structures. This approach has previously been studied for drilling straight holes but has not yet been generalized to milling procedures, such as mastoidectomy, in which cavities of more general shapes must be created. In this work, we present a general method for altering any path to achieve specified probabilities for any spatial arrangement of structures to be protected. We validate the method via numerical simulations in the context of mastoidectomy.

摘要

机器人已被证明在协助外科医生进行各种骨钻孔和铣削手术中很有用。例如,用于关节修复或置换手术的商业系统,最近在乳突切除术中也显示出体外可行性。通常,机器人沿着在CT图像上规划的路径进行引导,该CT图像已与手术室中的物理解剖结构配准,而物理解剖结构又与机器人配准。配准通常利用基准配准的高精度,但由于没有完美的现实世界配准,由机器人引导的钻头将不可避免地偏离其规划路径。由于目标配准误差的空间变化,偏差程度会沿着路径逐点变化。允许的偏差也会基于钻头尖端与路径上各种附近解剖结构之间的必要安全裕度而在空间上变化。配准误差的预期空间分布知识可以从理论模型或实验测量中获得,并用于修改规划路径。这种修改的目的是为保留特定结构实现所需的概率。这种方法以前已针对钻直孔进行过研究,但尚未推广到铣削手术,如乳突切除术,在乳突切除术中必须创建更一般形状的腔。在这项工作中,我们提出了一种通用方法,用于改变任何路径,以实现针对要保护的结构的任何空间排列的指定概率。我们在乳突切除术的背景下通过数值模拟验证了该方法。

相似文献

1
Incorporating Target Registration Error Into Robotic Bone Milling.
Proc SPIE Int Soc Opt Eng. 2015 Mar 18;9415. doi: 10.1117/12.2082340. Epub 2015 Feb 21.
2
Safety margins in robotic bone milling: from registration uncertainty to statistically safe surgeries.
Int J Med Robot. 2017 Sep;13(3). doi: 10.1002/rcs.1773. Epub 2016 Sep 21.
3
Predicting error in rigid-body point-based registration.
IEEE Trans Med Imaging. 1998 Oct;17(5):694-702. doi: 10.1109/42.736021.
4
Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery.
Proc SPIE Int Soc Opt Eng. 2014 Mar 12;9036:903614. doi: 10.1117/12.2043875.
5
Robotic mastoidectomy.
Otol Neurotol. 2011 Jan;32(1):11-6. doi: 10.1097/MAO.0b013e3181fcee9e.
6
In vitro accuracy evaluation of image-guided robot system for direct cochlear access.
Otol Neurotol. 2013 Sep;34(7):1284-90. doi: 10.1097/MAO.0b013e31829561b6.
7
Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy.
Proc SPIE Int Soc Opt Eng. 2016;9786. doi: 10.1117/12.2214984. Epub 2016 Mar 18.
8
A Compact, Bone-Attached Robot for Mastoidectomy.
J Med Device. 2015 Sep;9(3):0310031-310037. doi: 10.1115/1.4030083.
9
A force-sensing surgical drill for real-time force feedback in robotic mastoidectomy.
Int J Comput Assist Radiol Surg. 2023 Jul;18(7):1167-1174. doi: 10.1007/s11548-023-02873-7. Epub 2023 May 12.
10
The distribution of target registration error in rigid-body point-based registration.
IEEE Trans Med Imaging. 2001 Sep;20(9):917-27. doi: 10.1109/42.952729.

引用本文的文献

1
Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy.
Proc SPIE Int Soc Opt Eng. 2016;9786. doi: 10.1117/12.2214984. Epub 2016 Mar 18.
2
Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal.
Otol Neurotol. 2017 Mar;38(3):441-447. doi: 10.1097/MAO.0000000000001324.
3
A framework for automatic creation of gold-standard rigid 3D-2D registration datasets.
Int J Comput Assist Radiol Surg. 2017 Feb;12(2):263-275. doi: 10.1007/s11548-016-1482-4. Epub 2016 Sep 21.
4
Safety margins in robotic bone milling: from registration uncertainty to statistically safe surgeries.
Int J Med Robot. 2017 Sep;13(3). doi: 10.1002/rcs.1773. Epub 2016 Sep 21.

本文引用的文献

1
Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery.
Proc SPIE Int Soc Opt Eng. 2014 Mar 12;9036:903614. doi: 10.1117/12.2043875.
2
Design of a bone-attached parallel robot for percutaneous cochlear implantation.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2904-10. doi: 10.1109/TBME.2011.2162512. Epub 2011 Jul 22.
3
General approach to first-order error prediction in rigid point registration.
IEEE Trans Med Imaging. 2011 Mar;30(3):679-93. doi: 10.1109/TMI.2010.2091513. Epub 2010 Nov 11.
4
Robotic mastoidectomy.
Otol Neurotol. 2011 Jan;32(1):11-6. doi: 10.1097/MAO.0b013e3181fcee9e.
8
Image-guided technique in neurotology.
Otolaryngol Clin North Am. 2007 Jun;40(3):611-24, x. doi: 10.1016/j.otc.2007.03.006.
9
Development of the first force-controlled robot for otoneurosurgery.
Laryngoscope. 2003 Mar;113(3):465-71. doi: 10.1097/00005537-200303000-00014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验