Suppr超能文献

一种用于乳突切除术的紧凑型骨附着机器人。

A Compact, Bone-Attached Robot for Mastoidectomy.

作者信息

Dillon Neal P, Balachandran Ramya, Fitzpatrick J Michael, Siebold Michael A, Labadie Robert F, Wanna George B, Withrow Thomas J, Webster Robert J

机构信息

Department of Mechanical Engineering, Vanderbilt University , 2301 Vanderbilt Place , PMB 351592 , Nashville, TN 37235 e-mail:

Department of Otolaryngology, Vanderbilt University Medical Center , 1215 21st Avenue South , MCE 10450 , Nashville, TN 37232 e-mail:

出版信息

J Med Device. 2015 Sep;9(3):0310031-310037. doi: 10.1115/1.4030083.

Abstract

Otologic surgery often involves a mastoidectomy, which is the removal of a portion of the mastoid region of the temporal bone, to safely access the middle and inner ear. The surgery is challenging because many critical structures are embedded within the bone, making them difficult to see and requiring a high level of accuracy with the surgical dissection instrument, a high-speed drill. We propose to automate the mastoidectomy portion of the surgery using a compact, bone-attached robot. The system described in this paper is a milling robot with four degrees-of-freedom (DOF) that is fixed to the patient during surgery using a rigid positioning frame screwed into the surface of the bone. The target volume to be removed is manually identified by the surgeon pre-operatively in a computed tomography (CT) scan and converted to a milling path for the robot. The surgeon attaches the robot to the patient in the operating room and monitors the procedure. Several design considerations are discussed in the paper as well as the proposed surgical workflow. The mean targeting error of the system in free space was measured to be 0.5 mm or less at vital structures. Four mastoidectomies were then performed in cadaveric temporal bones, and the error at the edges of the target volume was measured by registering a postoperative computed tomography (CT) to the pre-operative CT. The mean error along the border of the milled cavity was 0.38 mm, and all critical anatomical structures were preserved.

摘要

耳科手术通常需要进行乳突切除术,即切除颞骨乳突区域的一部分,以便安全地进入中耳和内耳。该手术具有挑战性,因为许多关键结构都深藏于骨内,难以看清,这就要求手术解剖器械(高速钻头)具备高精度。我们提议使用一个紧凑的、附着于骨骼的机器人来实现手术中的乳突切除部分自动化。本文所描述的系统是一个具有四个自由度(DOF)的铣削机器人,在手术过程中通过拧入骨表面的刚性定位框架固定在患者身上。待切除的目标体积由外科医生在术前通过计算机断层扫描(CT)手动识别,并转换为机器人的铣削路径。外科医生在手术室中将机器人附着于患者身上并监控手术过程。本文讨论了几个设计考量以及提议的手术工作流程。该系统在自由空间中对关键结构的平均靶向误差经测量为0.5毫米或更小。随后在尸体颞骨上进行了四次乳突切除术,并通过将术后计算机断层扫描(CT)与术前CT配准来测量目标体积边缘的误差。铣削腔边界处的平均误差为0.38毫米,所有关键解剖结构均得以保留。

相似文献

1
A Compact, Bone-Attached Robot for Mastoidectomy.
J Med Device. 2015 Sep;9(3):0310031-310037. doi: 10.1115/1.4030083.
2
Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery.
Proc SPIE Int Soc Opt Eng. 2014 Mar 12;9036:903614. doi: 10.1117/12.2043875.
3
A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system.
Laryngoscope Investig Otolaryngol. 2017 Sep 25;2(5):208-214. doi: 10.1002/lio2.111. eCollection 2017 Oct.
4
In vitro accuracy evaluation of image-guided robot system for direct cochlear access.
Otol Neurotol. 2013 Sep;34(7):1284-90. doi: 10.1097/MAO.0b013e31829561b6.
5
Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal.
Otol Neurotol. 2017 Mar;38(3):441-447. doi: 10.1097/MAO.0000000000001324.
6
Robotic mastoidectomy.
Otol Neurotol. 2011 Jan;32(1):11-6. doi: 10.1097/MAO.0b013e3181fcee9e.
8
Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy.
Proc SPIE Int Soc Opt Eng. 2016;9786. doi: 10.1117/12.2214984. Epub 2016 Mar 18.
9
An experimental evaluation of the force requirements for robotic mastoidectomy.
Otol Neurotol. 2013 Sep;34(7):e93-102. doi: 10.1097/MAO.0b013e318291c76b.
10
Incorporating Target Registration Error Into Robotic Bone Milling.
Proc SPIE Int Soc Opt Eng. 2015 Mar 18;9415. doi: 10.1117/12.2082340. Epub 2015 Feb 21.

引用本文的文献

1
Burr Hole Endoscopic Mastoidectomy: A Morphometric Cadaveric Study.
J Neurol Surg B Skull Base. 2024 Jan 4;85(Suppl 2):e73-e79. doi: 10.1055/s-0043-1777674. eCollection 2024 Oct.
2
3
Review of Enhanced Handheld Surgical Drills.
Crit Rev Biomed Eng. 2023;51(6):29-50. doi: 10.1615/CritRevBiomedEng.2023049106.
4
A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging.
Otolaryngol Head Neck Surg. 2023 Oct;169(4):988-998. doi: 10.1002/ohn.317. Epub 2023 Mar 8.
5
Robotic Milling of Electrode Lead Channels During Cochlear Implantation in an Model.
Front Surg. 2021 Nov 11;8:742147. doi: 10.3389/fsurg.2021.742147. eCollection 2021.
6
Eyes in Ears: A Miniature Steerable Digital Endoscope for Trans-Nasal Diagnosis of Middle Ear Disease.
Ann Biomed Eng. 2021 Jan;49(1):219-232. doi: 10.1007/s10439-020-02518-9. Epub 2020 May 26.
7
Workflow assessment as a preclinical development tool : Surgical process models of three techniques for minimally invasive cochlear implantation.
Int J Comput Assist Radiol Surg. 2019 Aug;14(8):1389-1401. doi: 10.1007/s11548-019-02002-3. Epub 2019 Jun 5.
8
Robotic laser osteotomy through penscriptive structured light visual servoing.
Int J Comput Assist Radiol Surg. 2019 May;14(5):809-818. doi: 10.1007/s11548-018-01905-x. Epub 2019 Feb 7.
9
Instrument flight to the inner ear.
Sci Robot. 2017 Mar 15;2(4). doi: 10.1126/scirobotics.aal4916.
10
Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy.
Proc SPIE Int Soc Opt Eng. 2016;9786. doi: 10.1117/12.2214984. Epub 2016 Mar 18.

本文引用的文献

1
Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery.
Proc SPIE Int Soc Opt Eng. 2014 Mar 12;9036:903614. doi: 10.1117/12.2043875.
2
In vitro accuracy evaluation of image-guided robot system for direct cochlear access.
Otol Neurotol. 2013 Sep;34(7):1284-90. doi: 10.1097/MAO.0b013e31829561b6.
3
An experimental evaluation of the force requirements for robotic mastoidectomy.
Otol Neurotol. 2013 Sep;34(7):e93-102. doi: 10.1097/MAO.0b013e318291c76b.
4
A self-developed and constructed robot for minimally invasive cochlear implantation.
Acta Otolaryngol. 2012 Apr;132(4):355-60. doi: 10.3109/00016489.2011.642813. Epub 2012 Mar 4.
5
Design of a bone-attached parallel robot for percutaneous cochlear implantation.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2904-10. doi: 10.1109/TBME.2011.2162512. Epub 2011 Jul 22.
6
Design and analysis of a head-mounted parallel kinematic device for skull surgery.
Int J Comput Assist Radiol Surg. 2012 Jan;7(1):137-49. doi: 10.1007/s11548-011-0619-8. Epub 2011 May 31.
7
Robotic mastoidectomy.
Otol Neurotol. 2011 Jan;32(1):11-6. doi: 10.1097/MAO.0b013e3181fcee9e.
8
Automatic identification and 3D rendering of temporal bone anatomy.
Otol Neurotol. 2009 Jun;30(4):436-42. doi: 10.1097/MAO.0b013e31819e61ed.
9
Accuracy evaluation of microTargeting Platforms for deep-brain stimulation using virtual targets.
IEEE Trans Biomed Eng. 2009 Jan;56(1):37-44. doi: 10.1109/TBME.2008.2002110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验