Suppr超能文献

基于深度学习和 CT 图像的肺纤维化计算机辅助诊断。

Computer-Aided Diagnosis of Pulmonary Fibrosis Using Deep Learning and CT Images.

机构信息

From the Departments of Diagnostic, Interventional, and Pediatric Radiology.

Pulmonology, Inselspital, Bern University Hospital, University of Bern.

出版信息

Invest Radiol. 2019 Oct;54(10):627-632. doi: 10.1097/RLI.0000000000000574.

Abstract

OBJECTIVES

The objective of this study is to assess the performance of a computer-aided diagnosis (CAD) system (INTACT system) for the automatic classification of high-resolution computed tomography images into 4 radiological diagnostic categories and to compare this with the performance of radiologists on the same task.

MATERIALS AND METHODS

For the comparison, a total of 105 cases of pulmonary fibrosis were studied (54 cases of nonspecific interstitial pneumonia and 51 cases of usual interstitial pneumonia). All diagnoses were interstitial lung disease board consensus diagnoses (radiologically or histologically proven cases) and were retrospectively selected from our database. Two subspecialized chest radiologists made a consensual ground truth radiological diagnosis, according to the Fleischner Society recommendations. A comparison analysis was performed between the INTACT system and 2 other radiologists with different years of experience (readers 1 and 2). The INTACT system consists of a sequential pipeline in which first the anatomical structures of the lung are segmented, then the various types of pathological lung tissue are identified and characterized, and this information is then fed to a random forest classifier able to recommend a radiological diagnosis.

RESULTS

Reader 1, reader 2, and INTACT achieved similar accuracy for classifying pulmonary fibrosis into the original 4 categories: 0.6, 0.54, and 0.56, respectively, with P > 0.45. The INTACT system achieved an F-score (harmonic mean for precision and recall) of 0.56, whereas the 2 readers, on average, achieved 0.57 (P = 0.991). For the pooled classification (2 groups, with and without the need for biopsy), reader 1, reader 2, and CAD had similar accuracies of 0.81, 0.70, and 0.81, respectively. The F-score was again similar for the CAD system and the radiologists. The CAD system and the average reader reached F-scores of 0.80 and 0.79 (P = 0.898).

CONCLUSIONS

We found that a computer-aided detection algorithm based on machine learning was able to classify idiopathic pulmonary fibrosis with similar accuracy to a human reader.

摘要

目的

本研究旨在评估计算机辅助诊断(CAD)系统(INTACT 系统)自动将高分辨率计算机断层扫描图像分类为 4 种放射学诊断类别的性能,并将其与放射科医生在同一任务上的表现进行比较。

材料和方法

为了进行比较,共研究了 105 例肺纤维化病例(54 例非特异性间质性肺炎和 51 例寻常间质性肺炎)。所有诊断均为间质性肺疾病委员会共识诊断(放射学或组织学证实病例),并从我们的数据库中回顾性选择。两名胸部放射学专家根据 Fleischner 学会的建议,做出了一致的地面真实放射学诊断。对 INTACT 系统与另外 2 名具有不同经验年限的放射科医生(读者 1 和 2)进行了对比分析。INTACT 系统由一个顺序流水线组成,首先对肺的解剖结构进行分割,然后识别和描述各种类型的病理性肺组织,然后将这些信息输入到能够推荐放射学诊断的随机森林分类器中。

结果

读者 1、读者 2 和 INTACT 系统对将肺纤维化分类为原始 4 类的准确性相似:分别为 0.6、0.54 和 0.56,P > 0.45。INTACT 系统的 F 分数(精度和召回率的调和平均值)为 0.56,而 2 位读者的平均 F 分数为 0.57(P = 0.991)。对于 pooled 分类(有和没有活检需求的 2 个组),读者 1、读者 2 和 CAD 的准确率分别为 0.81、0.70 和 0.81。CAD 系统和放射科医生的 F 分数再次相似。CAD 系统和平均读者的 F 分数分别为 0.80 和 0.79(P = 0.898)。

结论

我们发现,基于机器学习的计算机辅助检测算法能够以与人类读者相似的准确度对特发性肺纤维化进行分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验