Chowell Gerardo, Blumberg Seth, Simonsen Lone, Miller Mark A, Viboud Cécile
Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA; Center for Global Health & Mathematical, Computational, and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA; Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, USA.
Epidemics. 2014 Dec;9:40-51. doi: 10.1016/j.epidem.2014.09.011. Epub 2014 Oct 7.
The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 209 deaths and 699 laboratory-confirmed cases in the Arabian Peninsula as of June 11, 2014. Preparedness efforts are hampered by considerable uncertainty about the nature and intensity of human-to-human transmission, with previous reproduction number estimates ranging from 0.4 to 1.5. Here we synthesize epidemiological data and transmission models for the MERS-CoV outbreak during April-October 2013 to resolve uncertainties in epidemic risk, while considering the impact of observation bias. We match the progression of MERS-CoV cases in 2013 to a dynamic transmission model that incorporates community and hospital compartments, and distinguishes transmission by zoonotic (index) cases and secondary cases. When observation bias is assumed to account for the fact that all reported zoonotic cases are severe, but only ∼ 57% of secondary cases are symptomatic, the average reproduction number of MERS-CoV is estimated to be 0.45 (95% CI:0.29-0.61). Alternatively, if these epidemiological observations are taken at face value, index cases are estimated to transmit substantially more effectively than secondary cases, (Ri = 0.84 (0.58-1.20) vs R(s) = 0.36 (0.24-0.51)). In both scenarios the relative contribution of hospital-based transmission is over four times higher than that of community transmission, indicating that disease control should be focused on hospitalized patients. Adjusting previously published estimates for observation bias confirms a strong support for the average R < 1 in the first stage of the outbreak in 2013 and thus, transmissibility of secondary cases of MERS-CoV remained well below the epidemic threshold. More information on the observation process is needed to clarify whether MERS-CoV is intrinsically weakly transmissible between people or whether existing control measures have contributed meaningfully to reducing the transmissibility of secondary cases. Our results could help evaluate the progression of MERS-CoV in recent months in response to changes in disease surveillance, control interventions, or viral adaptation.
截至2014年6月11日,中东呼吸综合征冠状病毒(MERS-CoV)疫情已在阿拉伯半岛导致209人死亡,699例实验室确诊病例。由于人际传播的性质和强度存在很大不确定性,此前的再生数估计值在0.4至1.5之间,这给防范工作带来了阻碍。在此,我们综合了2013年4月至10月期间MERS-CoV疫情的流行病学数据和传播模型,以解决疫情风险的不确定性,同时考虑观察偏倚的影响。我们将2013年MERS-CoV病例的进展情况与一个动态传播模型相匹配,该模型纳入了社区和医院两个部分,并区分了人畜共患病(首例)病例和二代病例的传播情况。当假设观察偏倚可解释所有报告的人畜共患病病例均为重症,但只有约57%的二代病例有症状这一事实时,MERS-CoV的平均再生数估计为0.45(95%可信区间:0.29 - 0.61)。或者,如果按这些流行病学观察的表面价值来看,首例病例的传播效率估计比二代病例高得多,(首例病例的再生数Ri = 0.84(0.58 - 1.20),二代病例的再生数R(s) = 0.36(0.24 - 0.51))。在这两种情况下,医院内传播的相对贡献都比社区传播高出四倍多,这表明疾病控制应集中在住院患者身上。调整此前公布的观察偏倚估计值后,有力支持了2013年疫情第一阶段平均R<1的情况,因此,MERS-CoV二代病例的传播性仍远低于疫情阈值。需要更多关于观察过程的信息,以明确MERS-CoV在人与人之间的内在传播性是否较弱,或者现有的控制措施是否对降低二代病例的传播性有显著贡献。我们的结果有助于评估近几个月MERS-CoV疫情的进展情况,以应对疾病监测、控制干预措施或病毒适应性的变化。