Suppr超能文献

一种针对新冠肺炎的改进型SEIR流行病模型的不确定性建模

Uncertainty Modeling of a Modified SEIR Epidemic Model for COVID-19.

作者信息

Wang Yanjin, Wang Pei, Zhang Shudao, Pan Hao

机构信息

Institute of Applied Physics and Computational Mathematics, No. 2, Fenghao Donglu, District Haidian, Beijing 100094, China.

出版信息

Biology (Basel). 2022 Aug 2;11(8):1157. doi: 10.3390/biology11081157.

Abstract

Based on SEIR (susceptible-exposed-infectious-removed) epidemic model, we propose a modified epidemic mathematical model to describe the spread of the coronavirus disease 2019 (COVID-19) epidemic in Wuhan, China. Using public data, the uncertainty parameters of the proposed model for COVID-19 in Wuhan were calibrated. The uncertainty of the control basic reproduction number was studied with the posterior probability density function of the uncertainty model parameters. The mathematical model was used to inverse deduce the earliest start date of COVID-19 infection in Wuhan with consideration of the lack of information for the initial conditions of the model. The result of the uncertainty analysis of the model is in line with the observed data for COVID-19 in Wuhan, China. The numerical results show that the modified mathematical model could model the spread of COVID-19 epidemics.

摘要

基于SEIR(易感-暴露-感染-康复)疫情模型,我们提出了一种改进的疫情数学模型,以描述2019年冠状病毒病(COVID-19)在中国武汉的传播情况。利用公开数据,对所提出的武汉COVID-19模型的不确定性参数进行了校准。利用不确定性模型参数的后验概率密度函数研究了控制基本再生数的不确定性。考虑到模型初始条件信息的缺乏,利用该数学模型反向推导了武汉COVID-19感染的最早开始日期。模型不确定性分析结果与中国武汉COVID-19的观测数据相符。数值结果表明,改进后的数学模型能够对COVID-19疫情的传播进行建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddf8/9404969/ac1ca04585ec/biology-11-01157-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验