Suppr超能文献

静脉内和胃内接触二氧化铈纳米颗粒会破坏微血管平滑肌信号传导。

Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling.

作者信息

Minarchick Valerie C, Stapleton Phoebe A, Fix Natalie R, Leonard Stephen S, Sabolsky Edward M, Nurkiewicz Timothy R

机构信息

*Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506 *Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506.

*Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health and Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506.

出版信息

Toxicol Sci. 2015 Mar;144(1):77-89. doi: 10.1093/toxsci/kfu256. Epub 2014 Dec 5.

Abstract

Cerium dioxide nanoparticles (CeO2 NP) hold great therapeutic potential, but the in vivo effects of non-pulmonary exposure routes are unclear. The first aim was to determine whether microvascular function is impaired after intravenous and gastric CeO2 NP exposure. The second aim was to investigate the mechanism(s) of action underlying microvascular dysfunction following CeO2 NP exposure. Rats were exposed to CeO2 NP (primary diameter: 4 ± 1 nm, surface area: 81.36 m(2)/g) by intratracheal instillation, intravenous injection, or gastric gavage. Mesenteric arterioles were harvested 24 h post-exposure and vascular function was assessed using an isolated arteriole preparation. Endothelium-dependent and independent function and vascular smooth muscle (VSM) signaling (soluble guanylyl cyclase [sGC] and cyclic guanosine monophosphate [cGMP]) were assessed. Reactive oxygen species (ROS) generation and nitric oxide (NO) production were analyzed. Compared with controls, endothelium-dependent and independent dilation were impaired following intravenous injection (by 61% and 45%) and gastric gavage (by 63% and 49%). However, intravenous injection resulted in greater microvascular impairment (16% and 35%) compared with gastric gavage at an identical dose (100 µg). Furthermore, sGC activation and cGMP responsiveness were impaired following pulmonary, intravenous, and gastric CeO2 NP treatment. Finally, nanoparticle exposure resulted in route-dependent, increased ROS generation and decreased NO production. These results indicate that CeO2 NP exposure route differentially impairs microvascular function, which may be mechanistically linked to decreased NO production and subsequent VSM signaling. Fully understanding the mechanisms behind CeO2 NP in vivo effects is a critical step in the continued therapeutic development of this nanoparticle.

摘要

二氧化铈纳米颗粒(CeO2 NP)具有巨大的治疗潜力,但非肺部暴露途径的体内效应尚不清楚。第一个目标是确定静脉内和胃内暴露于CeO2 NP后微血管功能是否受损。第二个目标是研究CeO2 NP暴露后微血管功能障碍的潜在作用机制。通过气管内滴注、静脉注射或胃灌胃将大鼠暴露于CeO2 NP(初级直径:4±1 nm,表面积:81.36 m(2)/g)。暴露后24小时采集肠系膜小动脉,并使用离体小动脉制剂评估血管功能。评估内皮依赖性和非依赖性功能以及血管平滑肌(VSM)信号传导(可溶性鸟苷酸环化酶[sGC]和环磷酸鸟苷[cGMP])。分析活性氧(ROS)生成和一氧化氮(NO)产生。与对照组相比,静脉注射(分别降低61%和45%)和胃灌胃(分别降低63%和49%)后内皮依赖性和非依赖性舒张功能受损。然而,在相同剂量(100 µg)下,静脉注射导致的微血管损伤比胃灌胃更大(分别为16%和35%)。此外,肺部、静脉内和胃内CeO2 NP处理后sGC激活和cGMP反应性受损。最后,纳米颗粒暴露导致ROS生成呈途径依赖性增加,NO产生减少。这些结果表明,CeO2 NP暴露途径对微血管功能的损害存在差异,这可能在机制上与NO产生减少和随后的VSM信号传导有关。全面了解CeO2 NP体内效应背后的机制是该纳米颗粒持续治疗开发的关键一步。

相似文献

1
Intravenous and gastric cerium dioxide nanoparticle exposure disrupts microvascular smooth muscle signaling.
Toxicol Sci. 2015 Mar;144(1):77-89. doi: 10.1093/toxsci/kfu256. Epub 2014 Dec 5.
3
Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species.
Br J Pharmacol. 2007 Apr;150(8):1084-91. doi: 10.1038/sj.bjp.0707179. Epub 2007 Mar 5.
7
Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model.
Am J Physiol Heart Circ Physiol. 2012 Sep 1;303(5):H597-604. doi: 10.1152/ajpheart.00138.2012. Epub 2012 Jun 22.
8
Daily red wine consumption improves vascular function by a soluble guanylyl cyclase-dependent pathway.
Am J Hypertens. 2011 Feb;24(2):162-8. doi: 10.1038/ajh.2010.227. Epub 2010 Nov 18.
9
Effects of hydrogen peroxide on relaxation through the NO/sGC/cGMP pathway in isolated rat iliac arteries.
Free Radic Res. 2015;49(12):1479-87. doi: 10.3109/10715762.2015.1089987.

引用本文的文献

1
Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice.
Part Fibre Toxicol. 2023 Mar 9;20(1):7. doi: 10.1186/s12989-023-00518-w.
2
Nanoparticles: Taking a Unique Position in Medicine.
Nanomaterials (Basel). 2023 Jan 31;13(3):574. doi: 10.3390/nano13030574.
3
Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions.
Int J Mol Sci. 2022 Jul 19;23(14):7962. doi: 10.3390/ijms23147962.
5
Engineered nanomaterials and oxidative stress: current understanding and future challenges.
Curr Opin Toxicol. 2019 Feb;13:74-80. doi: 10.1016/j.cotox.2018.09.001. Epub 2018 Sep 7.
6
A comparative study of toxicity of TiO, ZnO, and Ag nanoparticles to human aortic smooth-muscle cells.
Int J Nanomedicine. 2018 Nov 27;13:8037-8049. doi: 10.2147/IJN.S188175. eCollection 2018.
7
Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress.
Oxid Med Cell Longev. 2018 Sep 26;2018:6231482. doi: 10.1155/2018/6231482. eCollection 2018.
8
Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation.
Part Fibre Toxicol. 2018 May 23;15(1):24. doi: 10.1186/s12989-018-0261-5.
10
The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice.
Int J Nanomedicine. 2017 Apr 10;12:2913-2922. doi: 10.2147/IJN.S127180. eCollection 2017.

本文引用的文献

1
Vascular distribution of nanomaterials.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Jul-Aug;6(4):338-48. doi: 10.1002/wnan.1271. Epub 2014 Apr 28.
4
Ceria nanoparticles that can protect against ischemic stroke.
Angew Chem Int Ed Engl. 2012 Oct 29;51(44):11039-43. doi: 10.1002/anie.201203780. Epub 2012 Sep 11.
5
Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress.
ACS Nano. 2012 May 22;6(5):3767-75. doi: 10.1021/nn2048069. Epub 2012 Apr 27.
6
Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study.
Toxicol Sci. 2012 Jun;127(2):463-73. doi: 10.1093/toxsci/kfs113. Epub 2012 Mar 19.
8
Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats.
Int J Nanomedicine. 2011;6:2327-35. doi: 10.2147/IJN.S25119. Epub 2011 Oct 14.
9
Acute inhalation toxicity of cerium oxide nanoparticles in rats.
Toxicol Lett. 2011 Aug 28;205(2):105-15. doi: 10.1016/j.toxlet.2011.05.1027. Epub 2011 May 23.
10
Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice.
Environ Toxicol. 2013 Feb;28(2):107-18. doi: 10.1002/tox.20704. Epub 2011 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验