Suppr超能文献

一切都在时间中:通过动态双机电生物反应器系统在发育和疾病中对等容收缩进行建模。

It's all in the timing: modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system.

机构信息

a Department of Biomedical Engineering ; Tufts University ; Medford , MA USA.

出版信息

Organogenesis. 2014;10(3):317-22. doi: 10.4161/org.29207. Epub 2014 Oct 31.

Abstract

This commentary discusses the rationale behind our recently reported work entitled "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs," introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system. The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals as potential future directions for the use of this system.

摘要

这篇评论讨论了我们最近题为“通过组合机电刺激模拟等容收缩来改善工程心脏构建体的发育”的研究工作背后的原理,介绍了支持我们假说的新数据,并讨论了我们生物反应器系统的未来应用。在能够同时进行电刺激和机械刺激的生物反应器系统中刺激工程心脏组织,为模拟伸展和收缩之间的适当动力学以及体外模拟等容收缩提供了独特的机会。我们之前的研究表明,模拟健康组织中等容收缩时间的组合机电刺激通过增加收缩和钙处理蛋白的表达以及改善肥厚途径的激活来提高力的产生。在本文提出的新数据中,我们进一步证明,改变电刺激和机械刺激之间的时间来模拟非生理过程会对工程构建体的功能产生负面影响。我们最后探讨了各种改变电刺激和机械刺激信号之间时间的疾病状态,作为该系统未来应用的潜在方向。

相似文献

2
Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs.
Tissue Eng Part A. 2014 Jun;20(11-12):1654-67. doi: 10.1089/ten.TEA.2013.0355. Epub 2014 Apr 7.
3
Electrical and mechanical stimulation of cardiac cells and tissue constructs.
Adv Drug Deliv Rev. 2016 Jan 15;96:135-55. doi: 10.1016/j.addr.2015.07.009. Epub 2015 Jul 30.
4
5
Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.
Cardiovasc Eng Technol. 2015 Dec;6(4):533-45. doi: 10.1007/s13239-015-0236-8. Epub 2015 Jul 24.
6
Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.
J Tissue Eng Regen Med. 2012 Nov;6(10):e12-23. doi: 10.1002/term.525. Epub 2011 Dec 13.
8
Mechanical stimulation in the engineering of heart muscle.
Adv Drug Deliv Rev. 2016 Jan 15;96:156-60. doi: 10.1016/j.addr.2015.09.001. Epub 2015 Sep 8.

引用本文的文献

1
Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor.
iScience. 2022 Apr 26;25(5):104297. doi: 10.1016/j.isci.2022.104297. eCollection 2022 May 20.
2
Towards chamber specific heart-on-a-chip for drug testing applications.
Adv Drug Deliv Rev. 2020;165-166:60-76. doi: 10.1016/j.addr.2019.12.002. Epub 2020 Jan 7.
3
Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.
Crit Rev Biomed Eng. 2015;43(5-6):455-71. doi: 10.1615/CritRevBiomedEng.2016016066.
4
Electrical and mechanical stimulation of cardiac cells and tissue constructs.
Adv Drug Deliv Rev. 2016 Jan 15;96:135-55. doi: 10.1016/j.addr.2015.07.009. Epub 2015 Jul 30.
5
Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine.
Ann Biomed Eng. 2015 Mar;43(3):657-80. doi: 10.1007/s10439-014-1206-2. Epub 2014 Dec 24.
6
The role of tissue engineering and biomaterials in cardiac regenerative medicine.
Can J Cardiol. 2014 Nov;30(11):1307-22. doi: 10.1016/j.cjca.2014.08.027. Epub 2014 Sep 4.

本文引用的文献

1
Antenatal architecture and activity of the human heart.
Interface Focus. 2013 Apr 6;3(2):20120065. doi: 10.1098/rsfs.2012.0065.
2
Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs.
Tissue Eng Part A. 2014 Jun;20(11-12):1654-67. doi: 10.1089/ten.TEA.2013.0355. Epub 2014 Apr 7.
3
4
Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating.
Biomaterials. 2013 Jan;34(4):1063-72. doi: 10.1016/j.biomaterials.2012.10.065. Epub 2012 Nov 17.
6
Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype.
J Tissue Eng. 2012;3(1):2041731412455354. doi: 10.1177/2041731412455354. Epub 2012 Jul 27.
7
Microsystems for biomimetic stimulation of cardiac cells.
Lab Chip. 2012 Sep 21;12(18):3235-48. doi: 10.1039/c2lc40308k. Epub 2012 Jul 11.
8
AKT signalling in the failing heart.
Eur J Heart Fail. 2011 Aug;13(8):825-9. doi: 10.1093/eurjhf/hfr080. Epub 2011 Jun 30.
9
The influence of circadian variations on echocardiographic parameters in healthy people.
Echocardiography. 2011 Jul;28(6):612-8. doi: 10.1111/j.1540-8175.2011.01411.x. Epub 2011 Jun 15.
10
Optimization of electrical stimulation parameters for cardiac tissue engineering.
J Tissue Eng Regen Med. 2011 Jun;5(6):e115-25. doi: 10.1002/term.377. Epub 2011 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验