Suppr超能文献

用于机械增强和评估生物工程心肌构建体的循环应变生物反应器的开发。

Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.

作者信息

Salazar Betsy H, Cashion Avery T, Dennis Robert G, Birla Ravi K

机构信息

Department of Biomedical Engineering, Science and Engineering Research Center (SERC), Cullen College of Engineering, University of Houston, 3605 Cullen Blvd, Rm. 2021, Houston, TX, 77204, USA.

Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Chapel Hill, NC, USA.

出版信息

Cardiovasc Eng Technol. 2015 Dec;6(4):533-45. doi: 10.1007/s13239-015-0236-8. Epub 2015 Jul 24.

Abstract

The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.

摘要

本研究的目的是开发一种利用新型音圈致动器系统的生物反应器技术,以研究周期性应变对大鼠心肌细胞制成的心脏补片的影响。本研究中使用的生物工程肌肉构建体是通过在纤维蛋白凝胶上培养大鼠新生原代心脏细胞形成的。生物反应器的物理设计最初使用Solidworks进行构思,以测试间隙并进行结构应变分析。软件设计阶段完成后,生物反应器使用市售、定制加工和3D打印部件进行组装。我们利用该生物反应器评估了4小时拉伸方案对组织收缩特性的影响,之后还对组织进行了免疫组织学评估。在1Hz频率下10%拉伸的应变方案后,观察到收缩力增加,而对照组未观察到显著增加。此外,还注意到心肌肌原纤维排列、连接蛋白43表达和I型胶原蛋白分布增加。在本研究中,我们证明了一种新的生物反应器设计在改善工程化心肌组织收缩性方面的有效性。

相似文献

3

引用本文的文献

3
Latest Advances in 3D Bioprinting of Cardiac Tissues.心脏组织3D生物打印的最新进展
Adv Mater Technol. 2022 Nov;7(11). doi: 10.1002/admt.202101636. Epub 2022 May 13.
5
Recent advances in biological pumps as a building block for bioartificial hearts.作为生物人工心脏组成部分的生物泵的最新进展。
Front Bioeng Biotechnol. 2023 Jan 20;11:1061622. doi: 10.3389/fbioe.2023.1061622. eCollection 2023.
6
Engineering the Cellular Microenvironment of Post-infarct Myocardium on a Chip.在芯片上构建心肌梗死后心肌的细胞微环境
Front Cardiovasc Med. 2021 Jul 14;8:709871. doi: 10.3389/fcvm.2021.709871. eCollection 2021.

本文引用的文献

2
Materials science and tissue engineering: repairing the heart.材料科学与组织工程:修复心脏。
Mayo Clin Proc. 2013 Aug;88(8):884-98. doi: 10.1016/j.mayocp.2013.05.003.
4
A novel device for the study of somatosensory information processing.一种用于研究躯体感觉信息处理的新型装置。
J Neurosci Methods. 2012 Mar 15;204(2):215-20. doi: 10.1016/j.jneumeth.2011.11.007. Epub 2011 Dec 4.
8
Variable optimization for the formation of three-dimensional self-organized heart muscle.三维自组织心肌形成的变量优化。
In Vitro Cell Dev Biol Anim. 2009 Dec;45(10):592-601. doi: 10.1007/s11626-009-9234-1. Epub 2009 Sep 15.
9
Challenges in cardiac tissue engineering.心脏组织工程面临的挑战。
Tissue Eng Part B Rev. 2010 Apr;16(2):169-87. doi: 10.1089/ten.TEB.2009.0352.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验