School of Biomedical Sciences , University of Leeds , Leeds LS2 9JT , UK.
MRC Centre for Reproductive Health , University of Edinburgh , Edinburgh EH16 4T3 , UK.
Interface Focus. 2013 Apr 6;3(2):20120065. doi: 10.1098/rsfs.2012.0065.
We construct the components for a family of computational models of the electrophysiology of the human foetal heart from 60 days gestational age (DGA) to full term. This requires both cell excitation models that reconstruct the myocyte action potentials, and datasets of cardiac geometry and architecture. Fast low-angle shot and diffusion tensor magnetic resonance imaging (DT-MRI) of foetal hearts provides cardiac geometry with voxel resolution of approximately 100 µm. DT-MRI measures the relative diffusion of protons and provides a measure of the average intravoxel myocyte orientation, and the orientation of any higher order orthotropic organization of the tissue. Such orthotropic organization in the adult mammalian heart has been identified with myocardial sheets and cleavage planes between them. During gestation, the architecture of the human ventricular wall changes from being irregular and isotropic at 100 DGA to an anisotropic and orthotropic architecture by 140 DGA, when it has the smooth, approximately 120° transmural change in myocyte orientation that is characteristic of the adult mammalian ventricle. The DT obtained from DT-MRI provides the conductivity tensor that determines the spread of potential within computational models of cardiac tissue electrophysiology. The foetal electrocardiogram (fECG) can be recorded from approximately 60 DGA, and RR, PR and QT intervals between the P, R, Q and T waves of the fECG can be extracted by averaging from approximately 90 DGA. The RR intervals provide a measure of the pacemaker rate, the QT intervals an index of ventricular action potential duration, and its rate-dependence, and so these intervals constrain and inform models of cell electrophysiology. The parameters of models of adult human sinostrial node and ventricular cells that are based on adult cell electrophysiology and tissue molecular mapping have been modified to construct preliminary models of foetal cell electrophysiology, which reproduce these intervals from fECG recordings. The PR and QR intervals provide an index of conduction times, and hence propagation velocities (approx. 1-10 cm s(-1), increasing during gestation) and so inform models of tissue electrophysiology. Although the developing foetal heart is small and the cells are weakly coupled, it can support potentially lethal re-entrant arrhythmia.
我们构建了一系列从妊娠 60 天(DGA)到足月的人类胎儿心脏电生理学计算模型的组件。这需要重建心肌细胞动作电位的细胞兴奋模型,以及心脏几何形状和结构的数据集。快速低角度拍摄和扩散张量磁共振成像(DT-MRI)可提供具有约 100µm 体素分辨率的心脏几何形状。DT-MRI 测量质子的相对扩散,并提供测量体素内心肌细胞方向的平均值以及组织任何更高阶各向异性组织的方向的平均值。在成年哺乳动物心脏中,已经发现了这种各向异性组织与心肌片及其之间的分裂面有关。在妊娠期间,人类心室壁的结构从 100 DGA 时的不规则各向同性变为 140 DGA 时的各向异性和各向异性结构,此时心肌细胞方向具有平滑的、约 120°的贯穿壁变化,这是成年哺乳动物心室的特征。从 DT-MRI 获得的 DT 提供了决定心脏组织电生理学计算模型中电位传播的电导率张量。从大约 60 DGA 可以记录胎儿心电图(fECG),并且可以通过从大约 90 DGA 开始平均提取 fECG 的 P、R、Q 和 T 波之间的 RR、PR 和 QT 间隔来提取 RR 间隔提供起搏器速率的度量,QT 间隔提供心室动作电位持续时间及其速率依赖性的指数,因此这些间隔约束和告知细胞电生理学模型。基于成人细胞电生理学和组织分子映射的成人窦房结和心室细胞模型的参数已被修改,以构建胎儿细胞电生理学的初步模型,该模型从 fECG 记录中再现这些间隔。PR 和 QR 间隔提供了传导时间的指标,因此提供了传播速度(约 1-10cm/s,在妊娠期间增加)的信息,因此为组织电生理学模型提供了信息。尽管发育中的胎儿心脏很小,细胞耦合较弱,但它可以支持潜在致命的折返性心律失常。