Loganathan Rajprasad, Little Charles D, Joshi Pranav, Filla Michael B, Cheuvront Tracey J, Lansford Rusty, Rongish Brenda J
a Department of Anatomy and Cell Biology ; University of Kansas Medical Center ; Kansas City , KS USA.
Organogenesis. 2014;10(4):350-64. doi: 10.4161/org.36315. Epub 2015 Jan 26.
The tissue scale deformations (≥ 1 mm) required to form an amniote embryo are poorly understood. Here, we studied ∼400 μm-sized explant units from gastrulating quail embryos. The explants deformed in a reproducible manner when grown using a novel vitelline membrane-based culture method. Time-lapse recordings of latent embryonic motion patterns were analyzed after disk-shaped tissue explants were excised from three specific regions near the primitive streak: 1) anterolateral epiblast, 2) posterolateral epiblast, and 3) the avian organizer (Hensen's node). The explants were cultured for 8 hours-an interval equivalent to gastrulation. Both the anterolateral and the posterolateral epiblastic explants engaged in concentric radial/centrifugal tissue expansion. In sharp contrast, Hensen's node explants displayed Cartesian-like, elongated, bipolar deformations-a pattern reminiscent of axis elongation. Time-lapse analysis of explant tissue motion patterns indicated that both cellular motility and extracellular matrix fiber (tissue) remodeling take place during the observed morphogenetic deformations. As expected, treatment of tissue explants with a selective Rho-Kinase (p160ROCK) signaling inhibitor, Y27632, completely arrested all morphogenetic movements. Microsurgical experiments revealed that lateral epiblastic tissue was dispensable for the generation of an elongated midline axis- provided that an intact organizer (node) is present. Our computational analyses suggest the possibility of delineating tissue-scale morphogenetic movements at anatomically discrete locations in the embryo. Further, tissue deformation patterns, as well as the mechanical state of the tissue, require normal actomyosin function. We conclude that amniote embryos contain tissue-scale, regionalized morphogenetic motion generators, which can be assessed using our novel computational time-lapse imaging approach. These data and future studies-using explants excised from overlapping anatomical positions-will contribute to understanding the emergent tissue flow that shapes the amniote embryo.
形成羊膜动物胚胎所需的组织尺度变形(≥1毫米)目前还知之甚少。在这里,我们研究了来自原肠胚形成期鹌鹑胚胎的约400微米大小的外植体单元。当使用一种基于卵黄膜的新型培养方法培养时,这些外植体以可重复的方式发生变形。从原条附近的三个特定区域切下盘状组织外植体后,对潜在胚胎运动模式的延时记录进行了分析:1)前外侧上胚层,2)后外侧上胚层,3)鸟类组织者(亨氏结)。将外植体培养8小时——这一时间段相当于原肠胚形成期。前外侧和后外侧上胚层外植体都进行了同心径向/离心组织扩张。与之形成鲜明对比的是,亨氏结外植体呈现出类似笛卡尔坐标系的、拉长的双极变形——这种模式让人联想到轴的伸长。对外植体组织运动模式的延时分析表明,在观察到的形态发生变形过程中,细胞运动性和细胞外基质纤维(组织)重塑都在发生。正如预期的那样,用选择性Rho激酶(p160ROCK)信号抑制剂Y27632处理组织外植体,完全阻止了所有形态发生运动。显微手术实验表明,只要存在完整的组织者(结),外侧上胚层组织对于拉长的中线轴的产生是可有可无的。我们的计算分析表明,有可能在胚胎中解剖学上离散的位置描绘组织尺度的形态发生运动。此外,组织变形模式以及组织的力学状态需要正常的肌动球蛋白功能。我们得出结论,羊膜动物胚胎包含组织尺度的、区域化的形态发生运动发生器,可使用我们新颖的计算延时成像方法进行评估。这些数据以及未来使用从重叠解剖位置切下的外植体进行的研究,将有助于理解塑造羊膜动物胚胎的新兴组织流动。