Suppr超能文献

采用RNA测序技术进行细菌定量转录组学研究。

Quantitative bacterial transcriptomics with RNA-seq.

作者信息

Creecy James P, Conway Tyrrell

机构信息

Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States; Department of Biology, University of Central Oklahoma, Edmond, OK 73034, United States.

Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States.

出版信息

Curr Opin Microbiol. 2015 Feb;23:133-40. doi: 10.1016/j.mib.2014.11.011. Epub 2014 Dec 5.

Abstract

RNA sequencing has emerged as the premier approach to study bacterial transcriptomes. While the earliest published studies analyzed the data qualitatively, the data are readily digitized and lend themselves to quantitative analysis. High-resolution RNA sequence (RNA-seq) data allows transcriptional features (promoters, terminators, operons, among others) to be pinpointed on any bacterial transcriptome. Once the transcriptome is mapped, the activity of transcriptional features can be quantified. Here we highlight how quantitative transcriptome analysis can reveal biological insights and briefly discuss some of the challenges to be faced by the field of bacterial transcriptomics in the near future.

摘要

RNA测序已成为研究细菌转录组的首要方法。虽然最早发表的研究对数据进行定性分析,但这些数据很容易数字化并适合进行定量分析。高分辨率RNA序列(RNA-seq)数据能够在任何细菌转录组上精确确定转录特征(如启动子、终止子、操纵子等)。一旦转录组被绘制出来,转录特征的活性就可以被量化。在这里,我们强调定量转录组分析如何揭示生物学见解,并简要讨论细菌转录组学领域在不久的将来将面临的一些挑战。

相似文献

1
Quantitative bacterial transcriptomics with RNA-seq.
Curr Opin Microbiol. 2015 Feb;23:133-40. doi: 10.1016/j.mib.2014.11.011. Epub 2014 Dec 5.
2
High-throughput approaches to understanding gene function and mapping network architecture in bacteria.
Curr Opin Microbiol. 2013 Apr;16(2):199-206. doi: 10.1016/j.mib.2013.01.008. Epub 2013 Feb 9.
3
Transcriptome analysis using RNA-Seq.
Methods Mol Biol. 2013;923:221-39. doi: 10.1007/978-1-62703-026-7_15.
4
RNA-Seq-Based Comparative Transcriptomics: RNA Preparation and Bioinformatics.
Methods Mol Biol. 2017;1645:59-72. doi: 10.1007/978-1-4939-7183-1_5.
5
RNA-Seq for transcriptome analysis in non-model plants.
Methods Mol Biol. 2013;1069:43-58. doi: 10.1007/978-1-62703-613-9_4.
6
Advances in bacterial transcriptome and transposon insertion-site profiling using second-generation sequencing.
Trends Biotechnol. 2011 Nov;29(11):586-94. doi: 10.1016/j.tibtech.2011.06.004. Epub 2011 Jul 20.
7
Quantitative transcriptome analysis using RNA-seq.
Methods Mol Biol. 2014;1158:71-91. doi: 10.1007/978-1-4939-0700-7_5.
8
Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori.
Methods. 2015 Sep 15;86:89-101. doi: 10.1016/j.ymeth.2015.06.012. Epub 2015 Jun 16.
9
Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods.
Curr Opin Biotechnol. 2011 Feb;22(1):32-41. doi: 10.1016/j.copbio.2010.10.003. Epub 2010 Nov 10.
10
Differential RNA-seq: the approach behind and the biological insight gained.
Curr Opin Microbiol. 2014 Jun;19:97-105. doi: 10.1016/j.mib.2014.06.010. Epub 2014 Jul 12.

引用本文的文献

1
OpDetect: A convolutional and recurrent neural network classifier for precise and sensitive operon detection from RNA-seq data.
PLoS One. 2025 Aug 1;20(8):e0329355. doi: 10.1371/journal.pone.0329355. eCollection 2025.
2
Comparison of direct cDNA and PCR-cDNA Nanopore sequencing of RNA from isolates.
Microb Genom. 2024 Oct;10(10). doi: 10.1099/mgen.0.001296.
3
Methods for studying microbial acid stress responses: from molecules to populations.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae015.
4
Bacterial phenotypic heterogeneity through the lens of single-cell RNA sequencing.
Transcription. 2024 Feb-Apr;15(1-2):48-62. doi: 10.1080/21541264.2024.2334110. Epub 2024 Mar 26.
5
Transcriptional biomarker discovery toward building a load stress reporting system for engineered Escherichia coli strains.
Biotechnol Bioeng. 2024 Jan;121(1):355-365. doi: 10.1002/bit.28567. Epub 2023 Oct 9.
6
Methodologies for bacterial ribonuclease characterization using RNA-seq.
FEMS Microbiol Rev. 2023 Sep 5;47(5). doi: 10.1093/femsre/fuad049.
7
What are housekeeping genes?
PLoS Comput Biol. 2022 Jul 13;18(7):e1010295. doi: 10.1371/journal.pcbi.1010295. eCollection 2022 Jul.
8
9
Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks.
Adv Biochem Eng Biotechnol. 2022;180:57-90. doi: 10.1007/10_2021_199.
10
and Regulate a Distinct Set of Protein-Coding Genes in Epithelial Cells.
Front Immunol. 2021 Oct 11;12:738431. doi: 10.3389/fimmu.2021.738431. eCollection 2021.

本文引用的文献

2
Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis.
BMC Genomics. 2014 Aug 16;15(1):684. doi: 10.1186/1471-2164-15-684.
3
READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data.
Bioinformatics. 2014 Dec 1;30(23):3421-3. doi: 10.1093/bioinformatics/btu533. Epub 2014 Aug 13.
4
Pervasive transcription: illuminating the dark matter of bacterial transcriptomes.
Nat Rev Microbiol. 2014 Sep;12(9):647-53. doi: 10.1038/nrmicro3316. Epub 2014 Jul 28.
5
Differential RNA-seq: the approach behind and the biological insight gained.
Curr Opin Microbiol. 2014 Jun;19:97-105. doi: 10.1016/j.mib.2014.06.010. Epub 2014 Jul 12.
7
Dissemination of scientific software with Galaxy ToolShed.
Genome Biol. 2014 Feb 20;15(2):403. doi: 10.1186/gb4161.
8
Conservation of transcription start sites within genes across a bacterial genus.
mBio. 2014 Jul 1;5(4):e01398-14. doi: 10.1128/mBio.01398-14.
9
IVT-seq reveals extreme bias in RNA sequencing.
Genome Biol. 2014 Jun 30;15(6):R86. doi: 10.1186/gb-2014-15-6-r86.
10
Transcriptome dynamics-based operon prediction in prokaryotes.
BMC Bioinformatics. 2014 May 16;15:145. doi: 10.1186/1471-2105-15-145.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验