Suppr超能文献

线粒体是二价金属转运蛋白1(DMT1)的另一个作用位点。

Mitochondria represent another locale for the divalent metal transporter 1 (DMT1).

作者信息

Wolff Natascha A, Garrick Laura M, Zhao Lin, Garrick Michael D, Thévenod Frank

机构信息

a Institute of Physiology; Pathophysiology & Toxicology ; University of Witten/Herdecke ; Witten , Germany.

出版信息

Channels (Austin). 2014;8(5):458-66. doi: 10.4161/19336950.2014.956564.

Abstract

The divalent metal transporter (DMT1) is well known for its roles in duodenal iron absorption across the apical enterocyte membrane, in iron efflux from the endosome during transferrin-dependent cellular iron acquisition, as well as in uptake of non-transferrin bound iron in many cells. Recently, using multiple approaches, we have obtained evidence that the mitochondrial outer membrane is another subcellular locale of DMT1 expression. While iron is of vital importance for mitochondrial energy metabolism, its delivery is likely to be tightly controlled due to iron's damaging redox properties. Here we provide additional support for a role of DMT1 in mitochondrial iron acquisition by immunofluorescence colocalization with mitochondrial markers in cells and isolated mitochondria, as well as flow cytometric quantification of DMT1-positive mitochondria from an inducible expression system. Physiological consequences of mitochondrial DMT1 expression are discussed also in consideration of other DMT1 substrates, such as manganese, relevant to mitochondrial antioxidant defense.

摘要

二价金属转运蛋白(DMT1)因其在十二指肠铁通过肠上皮细胞顶端膜的吸收、转铁蛋白依赖性细胞铁摄取过程中从内体的铁流出以及许多细胞中非转铁蛋白结合铁的摄取中的作用而广为人知。最近,我们使用多种方法获得了证据,表明线粒体外膜是DMT1表达的另一个亚细胞定位。虽然铁对线粒体能量代谢至关重要,但由于铁具有破坏性的氧化还原特性,其传递可能受到严格控制。在这里,我们通过在细胞和分离的线粒体中与线粒体标记物进行免疫荧光共定位,以及对来自诱导表达系统的DMT1阳性线粒体进行流式细胞术定量,为DMT1在线粒体铁摄取中的作用提供了额外支持。还考虑了与线粒体抗氧化防御相关的其他DMT1底物(如锰),讨论了线粒体DMT1表达的生理后果。

相似文献

1
Mitochondria represent another locale for the divalent metal transporter 1 (DMT1).
Channels (Austin). 2014;8(5):458-66. doi: 10.4161/19336950.2014.956564.
2
Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1).
FASEB J. 2014 May;28(5):2134-45. doi: 10.1096/fj.13-240564. Epub 2014 Jan 21.
3
A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese.
Sci Rep. 2018 Jan 9;8(1):211. doi: 10.1038/s41598-017-18584-4.
4
Expression of divalent metal transporter 1 in primary hippocampal neurons: reconsidering its role in non-transferrin-bound iron influx.
J Neurochem. 2012 Jan;120(2):269-78. doi: 10.1111/j.1471-4159.2011.07578.x. Epub 2011 Nov 28.
5
Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function.
Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12345-50. doi: 10.1073/pnas.192423399. Epub 2002 Sep 3.
6
Functional role of DMT1 in transferrin-independent iron uptake by human hepatocyte and hepatocellular carcinoma cell, HLF.
Hepatol Res. 2006 Jul;35(3):152-62. doi: 10.1016/j.hepres.2006.03.011. Epub 2006 May 16.
8
Divalent metal transporter 1.
Hematology. 2005 Aug;10(4):339-45. doi: 10.1080/10245330500093419.

引用本文的文献

1
Nutritional Immunity and Fungal Pathogens: a New Role for Manganese.
Curr Clin Microbiol Rep. 2024 Jun;11(2):70-78. doi: 10.1007/s40588-024-00222-z. Epub 2024 Mar 20.
2
Why cells need iron: a compendium of iron utilisation.
Trends Endocrinol Metab. 2024 Dec;35(12):1026-1049. doi: 10.1016/j.tem.2024.04.015. Epub 2024 May 17.
3
DMT1-dependent endosome-mitochondria interactions regulate mitochondrial iron translocation and metastatic outgrowth.
Oncogene. 2024 Feb;43(9):650-667. doi: 10.1038/s41388-023-02933-x. Epub 2024 Jan 6.
4
Crosstalk among mitophagy, pyroptosis, ferroptosis, and necroptosis in central nervous system injuries.
Neural Regen Res. 2024 Aug 1;19(8):1660-1670. doi: 10.4103/1673-5374.389361. Epub 2023 Nov 8.
5
Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects.
Biomolecules. 2023 Jul 27;13(8):1172. doi: 10.3390/biom13081172.
6
Molecular Mechanism of Nramp-Family Transition Metal Transport.
J Mol Biol. 2021 Aug 6;433(16):166991. doi: 10.1016/j.jmb.2021.166991. Epub 2021 Apr 16.
8
Manganese Accumulation in the Brain via Various Transporters and Its Neurotoxicity Mechanisms.
Molecules. 2020 Dec 12;25(24):5880. doi: 10.3390/molecules25245880.
9
Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications.
Front Cell Dev Biol. 2020 Sep 2;8:848. doi: 10.3389/fcell.2020.00848. eCollection 2020.
10
Cell organelles as targets of mammalian cadmium toxicity.
Arch Toxicol. 2020 Apr;94(4):1017-1049. doi: 10.1007/s00204-020-02692-8. Epub 2020 Mar 23.

本文引用的文献

1
Antiporters of the mitochondrial carrier family.
Curr Top Membr. 2014;73:289-320. doi: 10.1016/B978-0-12-800223-0.00008-6.
2
Manganese in health and disease.
Met Ions Life Sci. 2013;13:199-227. doi: 10.1007/978-94-007-7500-8_7.
3
Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1).
FASEB J. 2014 May;28(5):2134-45. doi: 10.1096/fj.13-240564. Epub 2014 Jan 21.
4
Mouse divalent metal transporter 1 is a copper transporter in HEK293 cells.
Biometals. 2014 Feb;27(1):115-23. doi: 10.1007/s10534-013-9691-6. Epub 2013 Dec 11.
6
SOD2 in mitochondrial dysfunction and neurodegeneration.
Free Radic Biol Med. 2013 Sep;62:4-12. doi: 10.1016/j.freeradbiomed.2013.05.027. Epub 2013 May 29.
7
Manganese homeostasis and transport.
Met Ions Life Sci. 2013;12:169-201. doi: 10.1007/978-94-007-5561-1_6.
8
Iron and copper in mitochondrial diseases.
Cell Metab. 2013 Mar 5;17(3):319-28. doi: 10.1016/j.cmet.2013.02.004.
9
Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1.
J Biol Chem. 2012 Aug 31;287(36):30485-96. doi: 10.1074/jbc.M112.364208. Epub 2012 Jun 26.
10
Mechanisms of mammalian iron homeostasis.
Biochemistry. 2012 Jul 24;51(29):5705-24. doi: 10.1021/bi300752r. Epub 2012 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验