Suppr超能文献

红藻和绿藻中假定的RNA聚合酶II C末端结构域相关蛋白的鉴定。

The identification of putative RNA polymerase II C-terminal domain associated proteins in red and green algae.

作者信息

Yang Chunlin, Hager Paul W, Stiller John W

机构信息

a Department of Biology ; East Carolina University ; Greenville , NC USA.

出版信息

Transcription. 2014;5(5):e970944. doi: 10.4161/21541264.2014.970944. Epub 2014 Dec 10.

Abstract

A tandemly repeated C-terminal domain (CTD) of the largest subunit of RNA polymerase II is functionally essential and strongly conserved in many organisms, including animal, yeast and plant models. Although present in simple, ancestral red algae, CTD tandem repeats have undergone extensive modifications and degeneration during the evolutionary transition to developmentally complex rhodophytes. In contrast, CTD repeats are conserved in both green algae and their more complex land plant relatives. Understanding the mechanistic differences that underlie these variant patterns of CTD evolution requires knowledge of CTD-associated proteins in these 2 lineages. To provide an initial baseline comparison, we bound potential phospho-CTD associated proteins (PCAPs) to artificially synthesized and phosphorylated CTD repeats from the unicellular red alga Cyanidioschyzon merolae and green alga Chlamydomonas reinhardtii. Our results indicate that red and green algae share a number of PCAPs, including kinases and proteins involved in mRNA export. There also are important taxon-specific differences, including mRNA splicing-related PCAPs recovered from Chlamydomonas but not Cyanidioschyzon, consistent with the relative intron densities in green and red algae. Our results also offer the first experimental indication that different proteins bind 2 distinct types of repeats in Cyanidioschyzon, suggesting a division of function between the proximal and distal CTD, similar to patterns identified in more developmentally complex model organisms.

摘要

RNA聚合酶II最大亚基的串联重复C末端结构域(CTD)在功能上至关重要,并且在包括动物、酵母和植物模型在内的许多生物体中高度保守。尽管CTD串联重复存在于简单的原始红藻中,但在向发育复杂的红藻进化过渡过程中,CTD串联重复经历了广泛的修饰和退化。相比之下,CTD重复在绿藻及其更复杂的陆地植物亲属中都保守。了解这些CTD进化变异模式背后的机制差异需要了解这两个谱系中与CTD相关的蛋白质。为了提供初步的基线比较,我们将潜在的磷酸化CTD相关蛋白(PCAP)与来自单细胞红藻梅洛拉隐球藻和绿藻莱茵衣藻的人工合成和磷酸化的CTD重复序列结合。我们的结果表明,红藻和绿藻共享许多PCAP,包括激酶和参与mRNA输出的蛋白质。也存在重要的分类群特异性差异,包括从衣藻中回收但未从梅洛拉隐球藻中回收的与mRNA剪接相关的PCAP,这与绿藻和红藻中的相对内含子密度一致。我们的结果还提供了第一个实验证据,表明不同的蛋白质结合梅洛拉隐球藻中两种不同类型的重复序列,这表明近端和远端CTD之间存在功能划分,类似于在发育更复杂的模型生物体中发现的模式。

相似文献

1
The identification of putative RNA polymerase II C-terminal domain associated proteins in red and green algae.
Transcription. 2014;5(5):e970944. doi: 10.4161/21541264.2014.970944. Epub 2014 Dec 10.
2
Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5920-5. doi: 10.1073/pnas.1323616111. Epub 2014 Apr 7.
3
Arabidopsis thaliana PRP40s are RNA polymerase II C-terminal domain-associating proteins.
Arch Biochem Biophys. 2009 Apr 1;484(1):30-8. doi: 10.1016/j.abb.2009.01.004. Epub 2009 Jan 14.
7
The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II.
J Biol Chem. 2000 Dec 22;275(51):39935-43. doi: 10.1074/jbc.M004118200.
10
Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control.
J Cell Physiol. 2002 Feb;190(2):160-9. doi: 10.1002/jcp.10058.

引用本文的文献

1
Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control.
Wiley Interdiscip Rev RNA. 2019 Jul;10(4):e1529. doi: 10.1002/wrna.1529. Epub 2019 Mar 7.

本文引用的文献

2
Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5920-5. doi: 10.1073/pnas.1323616111. Epub 2014 Apr 7.
3
Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages.
BMC Evol Biol. 2014 Jan 17;14:10. doi: 10.1186/1471-2148-14-10.
4
Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains.
Cell. 2013 Nov 21;155(5):1049-1060. doi: 10.1016/j.cell.2013.10.033.
5
RNA polymerase II C-terminal domain: Tethering transcription to transcript and template.
Chem Rev. 2013 Nov 13;113(11):8423-55. doi: 10.1021/cr400158h. Epub 2013 Sep 16.
6
The RNA polymerase II carboxy-terminal domain (CTD) code.
Chem Rev. 2013 Nov 13;113(11):8456-90. doi: 10.1021/cr400071f. Epub 2013 Aug 16.
7
Punctuation and syntax of the RNA polymerase II CTD code in fission yeast.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18024-9. doi: 10.1073/pnas.1208995109. Epub 2012 Oct 15.
8
The CTD code of RNA polymerase II: a structural view.
Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):1-16. doi: 10.1002/wrna.1138. Epub 2012 Oct 5.
9
SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions.
J Biol Chem. 2012 Sep 7;287(37):30897-905. doi: 10.1074/jbc.R111.309302. Epub 2012 Sep 5.
10
Emerging Views on the CTD Code.
Genet Res Int. 2012;2012:347214. doi: 10.1155/2012/347214. Epub 2012 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验