Suppr超能文献

流动体系中可见光光氧化还原催化的发展

The Development of Visible-Light Photoredox Catalysis in Flow.

作者信息

Garlets Zachary J, Nguyen John D, Stephenson Corey R J

机构信息

University of Michigan, Department of Chemistry, 930 N. University Ave. Ann Arbor, Michigan 48109 (USA).

出版信息

Isr J Chem. 2014 Apr 1;54(4):351-360. doi: 10.1002/ijch.201300136.

Abstract

Visible-light photoredox catalysis has recently emerged as a viable alternative for radical reactions otherwise carried out with tin and boron reagents. It has been recognized that by merging photoredox catalysis with flow chemistry, slow reaction times, lower yields, and safety concerns may be obviated. While flow reactors have been successfully applied to reactions carried out with UV light, only recent developments have demonstrated the same potential of flow reactors for the improvement of visible-light-mediated reactions. This review examines the initial and continuing development of visible-light-mediated photoredox flow chemistry by exemplifying the benefits of flow chemistry compared with conventional batch techniques.

摘要

可见光光氧化还原催化最近已成为一种可行的替代方法,可用于原本使用锡和硼试剂进行的自由基反应。人们已经认识到,通过将光氧化还原催化与流动化学相结合,可以避免反应时间长、产率低和安全问题。虽然流动反应器已成功应用于紫外光反应,但直到最近的进展才证明流动反应器在改善可见光介导反应方面具有同样的潜力。本综述通过举例说明流动化学与传统间歇技术相比的优势,考察了可见光介导的光氧化还原流动化学的初步和持续发展。

相似文献

1
The Development of Visible-Light Photoredox Catalysis in Flow.
Isr J Chem. 2014 Apr 1;54(4):351-360. doi: 10.1002/ijch.201300136.
2
Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
Acc Chem Res. 2016 Oct 18;49(10):2295-2306. doi: 10.1021/acs.accounts.6b00270. Epub 2016 Aug 16.
3
Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis.
Angew Chem Int Ed Engl. 2015 Jan 26;54(5):1625-8. doi: 10.1002/anie.201409999. Epub 2014 Dec 10.
4
Batch to flow deoxygenation using visible light photoredox catalysis.
Chem Commun (Camb). 2013 May 14;49(39):4352-4. doi: 10.1039/c2cc37206a. Epub 2012 Nov 12.
5
Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.
Nat Protoc. 2016 Jan;11(1):10-21. doi: 10.1038/nprot.2015.113. Epub 2015 Dec 3.
6
Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
Acc Chem Res. 2016 Oct 18;49(10):2316-2327. doi: 10.1021/acs.accounts.6b00293. Epub 2016 Sep 26.
7
Tin-free radical cyclization reactions initiated by visible light photoredox catalysis.
Chem Commun (Camb). 2010 Jul 21;46(27):4985-7. doi: 10.1039/c0cc00981d. Epub 2010 May 28.
8
Controllable Chemoselectivity in Visible-Light Photoredox Catalysis: Four Diverse Aerobic Radical Cascade Reactions.
Angew Chem Int Ed Engl. 2015 Sep 21;54(39):11443-7. doi: 10.1002/anie.201505193. Epub 2015 Jul 16.
9
Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
Chimia (Aarau). 2012;66(6):394-8. doi: 10.2533/chimia.2012.394.
10
Recent Synthetic Applications of the Hypervalent Iodine(III) Reagents in Visible-Light-Induced Photoredox Catalysis.
Front Chem. 2020 Sep 23;8:551159. doi: 10.3389/fchem.2020.551159. eCollection 2020.

引用本文的文献

2
Advancements in hydrochlorination of alkenes.
Beilstein J Org Chem. 2024 Apr 15;20:787-814. doi: 10.3762/bjoc.20.72. eCollection 2024.
4
A One-Pot Photochemical Method for the Generation of Functionalized Aminocyclopentanes.
Org Lett. 2022 Jun 24;24(24):4344-4348. doi: 10.1021/acs.orglett.2c01483. Epub 2022 Jun 14.
5
UV-mediated hydrophosphinylation of unactivated alkenes with phosphinates under batch and flow conditions.
RSC Adv. 2018 Feb 23;8(15):8385-8392. doi: 10.1039/c7ra12977g. eCollection 2018 Feb 19.
6
Photocatalytic Oxidative Bromination of 2,6-Dichlorotoluene to 2,6-Dichlorobenzyl Bromide in a Microchannel Reactor.
ACS Omega. 2022 Jan 26;7(5):4624-4629. doi: 10.1021/acsomega.1c06737. eCollection 2022 Feb 8.
7
Stereoselective, Ruthenium-Photocatalyzed Synthesis of 1,2-Diaminotruxinic Bis-amino Acids from 4-Arylidene-5(4)-oxazolones.
J Org Chem. 2022 Mar 4;87(5):3529-3545. doi: 10.1021/acs.joc.1c03092. Epub 2022 Feb 10.
9
Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology.
ACS Cent Sci. 2021 Jul 28;7(7):1126-1134. doi: 10.1021/acscentsci.1c00303. Epub 2021 Jun 8.
10
Mechanistic Investigation and Optimization of Photoredox Anti-Markovnikov Hydroamination.
J Am Chem Soc. 2021 Jul 14;143(27):10232-10242. doi: 10.1021/jacs.1c03644. Epub 2021 Jun 30.

本文引用的文献

1
A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow.
Angew Chem Int Ed Engl. 2013 Jul 22;52(30):7860-4. doi: 10.1002/anie.201303483. Epub 2013 Jun 19.
2
Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis.
Chem Rev. 2013 Jul 10;113(7):5322-63. doi: 10.1021/cr300503r. Epub 2013 Mar 19.
3
Flow photochemistry: Old light through new windows.
Beilstein J Org Chem. 2012;8:2025-52. doi: 10.3762/bjoc.8.229. Epub 2012 Nov 21.
4
Batch to flow deoxygenation using visible light photoredox catalysis.
Chem Commun (Camb). 2013 May 14;49(39):4352-4. doi: 10.1039/c2cc37206a. Epub 2012 Nov 12.
6
Toward a visible light mediated photocyclization: Cu-based sensitizers for the synthesis of [5]helicene.
Org Lett. 2012 Jun 15;14(12):2988-91. doi: 10.1021/ol300983b. Epub 2012 May 29.
7
Application of microflow conditions to visible light photoredox catalysis.
Org Lett. 2012 Jun 1;14(11):2658-61. doi: 10.1021/ol3005529. Epub 2012 May 15.
8
A photoflow reactor for the continuous photoredox-mediated synthesis of C-glycoamino acids and C-glycolipids.
Angew Chem Int Ed Engl. 2012 Apr 23;51(17):4140-3. doi: 10.1002/anie.201200593. Epub 2012 Mar 22.
9
Visible-light photoredox catalysis in flow.
Angew Chem Int Ed Engl. 2012 Apr 23;51(17):4144-7. doi: 10.1002/anie.201200961. Epub 2012 Mar 16.
10
Shining light on photoredox catalysis: theory and synthetic applications.
J Org Chem. 2012 Feb 17;77(4):1617-22. doi: 10.1021/jo202538x. Epub 2012 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验