Klein Christian, Sparber Christof, Markowich Peter
Institut de Mathématiques de Bourgogne , 9 avenue Alain Savary , BP 47870, 21078 Dijon, France.
Department of Mathematics, Statistics, and Computer Science, M/C 249 , University of Illinois at Chicago , 851 S. Morgan St., Chicago, IL 60607, USA.
Proc Math Phys Eng Sci. 2014 Dec 8;470(2172):20140364. doi: 10.1098/rspa.2014.0364.
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.
我们使用傅里叶谱方法,对一维情形下涉及分数阶拉普拉斯算子的色散薛定谔型方程进行了详细的数值研究。通过适当选择色散指数,可以确定质量和能量的亚临界和超临界区域。这使我们能够研究有限时间爆破与全局存在性的可能性、爆破的性质、非线性基态的稳定性和不稳定性以及解的长时间动力学。后者也在半经典框架下进行了研究。此外,我们通过数值方法构造了分数阶非线性薛定谔方程的基态解。