Al-Raeei Marwan, El-Daher Moustafa Sayem
Faculty of Sciences, Damascus University, Damascus, Syria.
Higher Institute of Laser Applications and Researches, Damascus University, Damascus, Syria.
Heliyon. 2020 Jul 18;6(7):e04495. doi: 10.1016/j.heliyon.2020.e04495. eCollection 2020 Jul.
In this study, we apply the definition of one of the fractional derivatives definitions of increasing values of the variable, which is the fractional derivative of Riemann-Liouville, and the numerical-integral methods to find numerical solutions of the fractional Schrödinger equation with the time-independent form for Van Der Walls potential type. We use the dimensionless formalism of the fractional Schrödinger equation in the space-dependent form in case of London dispersion potential in the stationary state. The solutions are found for multiple values of the space-dependent fractional Schrödinger equation parameter with a certain value of the energy. We find that the numerical solutions are physically acceptable for some values of the space dependent fractional parameter of the fractional Schrödinger equation but are not physically acceptable for others for a specific case. The numerical solutions can be applied for the systems that obey London dispersion potential type, which is resulted from the polarization of the instantaneous multi-poles of two moieties, such as soft materials systems and fluids of the inert gases.
在本研究中,我们应用变量值递增的分数阶导数定义之一,即黎曼 - 刘维尔分数阶导数,并采用数值积分方法来求解具有范德瓦尔斯势类型的与时间无关形式的分数阶薛定谔方程的数值解。在稳态伦敦色散势的情况下,我们使用空间相关形式的分数阶薛定谔方程的无量纲形式。针对能量的特定值,我们找到了空间相关分数阶薛定谔方程参数的多个值的解。我们发现,对于分数阶薛定谔方程空间相关分数参数的某些值,数值解在物理上是可接受的,但对于特定情况的其他值则在物理上不可接受。这些数值解可应用于服从伦敦色散势类型的系统,这种势是由两个部分的瞬时多极极化产生的,例如软材料系统和惰性气体流体。