Suppr超能文献

大西洋鲑(Salmo salar)的混合群体中的基因组预测。

Genomic prediction in an admixed population of Atlantic salmon (Salmo salar).

机构信息

Breeding and Genetics, AquaGen AS Trondheim, Norway.

Research and Development, AquaGen AS Trondheim, Norway.

出版信息

Front Genet. 2014 Nov 21;5:402. doi: 10.3389/fgene.2014.00402. eCollection 2014.

Abstract

Reliability of genomic selection (GS) models was tested in an admixed population of Atlantic salmon, originating from crossing of several wild subpopulations. The models included ordinary genomic BLUP models (GBLUP), using genome-wide SNP markers of varying densities (1-220 k), a genomic identity-by-descent model (IBD-GS), using linkage analysis of sparse genome-wide markers, as well as a classical pedigree-based model. Reliabilities of the models were compared through 5-fold cross-validation. The traits studied were salmon lice (Lepeophtheirus salmonis) resistance (LR), measured as (log) density on the skin and fillet color (FC), with respective estimated heritabilities of 0.14 and 0.43. All genomic models outperformed the classical pedigree-based model, for both traits and at all marker densities. However, the relative improvement differed considerably between traits, models and marker densities. For the highly heritable FC, the IBD-GS had similar reliability as GBLUP at high marker densities (>22 k). In contrast, for the lowly heritable LR, IBD-GS was clearly inferior to GBLUP, irrespective of marker density. Hence, GBLUP was robust to marker density for the lowly heritable LR, but sensitive to marker density for the highly heritable FC. We hypothesize that this phenomenon may be explained by historical admixture of different founder populations, expected to reduce short-range lice density (LD) and induce long-range LD. The relative importance of LD/relationship information is expected to decrease/increase with increasing heritability of the trait. Still, using the ordinary GBLUP, the typical long-range LD of an admixed population may be effectively captured by sparse markers, while efficient utilization of relationship information may require denser markers (e.g., 22 k or more).

摘要

混合群体中大西洋鲑鱼基因组选择(GS)模型的可靠性测试,该群体源自多个野生亚群的杂交。模型包括普通基因组 BLUP 模型(GBLUP),使用不同密度(1-220 k)的全基因组 SNP 标记,基于基因组亲缘关系的模型(IBD-GS),使用稀疏全基因组标记的连锁分析,以及基于经典系谱的模型。通过 5 倍交叉验证比较模型的可靠性。研究的性状是鲑鱼虱(Lepeophtheirus salmonis)抗性(LR),以皮肤和鱼片颜色(FC)上的(对数)密度来衡量,分别估计的遗传力为 0.14 和 0.43。所有基因组模型都优于经典系谱模型,对于两个性状和所有标记密度都是如此。然而,相对改进在性状、模型和标记密度之间有很大差异。对于高度遗传的 FC,IBD-GS 在高标记密度(>22 k)时与 GBLUP 具有相似的可靠性。相比之下,对于低度遗传的 LR,IBD-GS 无论标记密度如何,都明显劣于 GBLUP。因此,GBLUP 对低度遗传的 LR 的标记密度具有鲁棒性,但对高度遗传的 FC 的标记密度敏感。我们假设这种现象可能是由于不同创始人群体的历史混合导致的,预计会降低短距离虱密度(LD)并诱导长距离 LD。LD/关系信息的相对重要性预计会随着性状遗传力的增加而降低/增加。尽管如此,使用普通 GBLUP,可以通过稀疏标记有效地捕获混合群体的典型长距离 LD,而有效利用关系信息可能需要更密集的标记(例如 22 k 或更多)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d935/4240172/a64fa11addf8/fgene-05-00402-g0001.jpg

相似文献

1
Genomic prediction in an admixed population of Atlantic salmon (Salmo salar).
Front Genet. 2014 Nov 21;5:402. doi: 10.3389/fgene.2014.00402. eCollection 2014.
5
Identity-by-descent genomic selection using selective and sparse genotyping for binary traits.
Genet Sel Evol. 2015 Feb 22;47(1):8. doi: 10.1186/s12711-015-0090-z.
6
Use of whole-genome sequence data for fine mapping and genomic prediction of sea louse resistance in Atlantic salmon.
Front Genet. 2024 Apr 19;15:1381333. doi: 10.3389/fgene.2024.1381333. eCollection 2024.
7
Identity-by-descent genomic selection using selective and sparse genotyping.
Genet Sel Evol. 2014 Jan 20;46(1):3. doi: 10.1186/1297-9686-46-3.
8
Genetic parameters and genomic prediction of growth and breast morphological traits in a crossbreed duck population.
Evol Appl. 2024 Feb 7;17(2):e13638. doi: 10.1111/eva.13638. eCollection 2024 Feb.
10
Using markers with large effect in genetic and genomic predictions.
J Anim Sci. 2017 Jan;95(1):59-71. doi: 10.2527/jas.2016.0754.

引用本文的文献

3
Advances in biotechnology and breeding innovations in China's marine aquaculture.
Adv Biotechnol (Singap). 2024 Oct 18;2(4):38. doi: 10.1007/s44307-024-00043-7.
4
Genomic selection for resistance to one pathogenic strain of in blue mussel .
Front Genet. 2025 Jan 3;15:1487807. doi: 10.3389/fgene.2024.1487807. eCollection 2024.
5
Decoding the fish genome opens a new era in important trait research and molecular breeding in China.
Sci China Life Sci. 2024 Oct;67(10):2064-2083. doi: 10.1007/s11427-023-2670-5. Epub 2024 Aug 12.
6
Use of whole-genome sequence data for fine mapping and genomic prediction of sea louse resistance in Atlantic salmon.
Front Genet. 2024 Apr 19;15:1381333. doi: 10.3389/fgene.2024.1381333. eCollection 2024.
7
Applying genetic technologies to combat infectious diseases in aquaculture.
Rev Aquac. 2023 Mar;15(2):491-535. doi: 10.1111/raq.12733. Epub 2022 Sep 5.
8
Imputation strategies for genomic prediction using nanopore sequencing.
BMC Biol. 2023 Dec 8;21(1):286. doi: 10.1186/s12915-023-01782-0.

本文引用的文献

2
Identity-by-descent genomic selection using selective and sparse genotyping.
Genet Sel Evol. 2014 Jan 20;46(1):3. doi: 10.1186/1297-9686-46-3.
3
The Salmon Louse Lepeophtheirus salmonis (Copepoda: Caligidae) life cycle has only two Chalimus stages.
PLoS One. 2013 Sep 12;8(9):e73539. doi: 10.1371/journal.pone.0073539. eCollection 2013.
4
The admixed population structure in Danish Jersey dairy cattle challenges accurate genomic predictions.
J Anim Sci. 2013 Jul;91(7):3105-12. doi: 10.2527/jas.2012-5490. Epub 2013 May 8.
5
Genomic BLUP decoded: a look into the black box of genomic prediction.
Genetics. 2013 Jul;194(3):597-607. doi: 10.1534/genetics.113.152207. Epub 2013 May 2.
6
The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction.
Genetics. 2013 Feb;193(2):621-31. doi: 10.1534/genetics.112.146290. Epub 2012 Dec 24.
7
The importance of identity-by-state information for the accuracy of genomic selection.
Genet Sel Evol. 2012 Aug 31;44(1):28. doi: 10.1186/1297-9686-44-28.
8
Single-step methods for genomic evaluation in pigs.
Animal. 2012 Oct;6(10):1565-71. doi: 10.1017/S1751731112000742. Epub 2012 Apr 5.
9
Extension of the bayesian alphabet for genomic selection.
BMC Bioinformatics. 2011 May 23;12:186. doi: 10.1186/1471-2105-12-186.
10
Genomic evaluations with many more genotypes.
Genet Sel Evol. 2011 Mar 2;43(1):10. doi: 10.1186/1297-9686-43-10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验