Suppr超能文献

TGIF:血管网络的拓扑间隙填充——一种生成性生理建模方法。

TGIF: topological gap in-fill for vascular networks--a generative physiological modeling approach.

作者信息

Schneider Matthias, Hirsch Sven, Weber Bruno, Székely Gábor, Menze Bjoern H

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 2):89-96. doi: 10.1007/978-3-319-10470-6_12.

Abstract

This paper describes a new approach for the reconstruction of complete 3-D arterial trees from partially incomplete image data. We utilize a physiologically motivated simulation framework to iteratively generate artificial, yet physiologically meaningful, vasculatures for the correction of vascular connectivity. The generative approach is guided by a simplified angiogenesis model, while at the same time topological and morphological evidence extracted from the image data is considered to form functionally adequate tree models. We evaluate the effectiveness of our method on four synthetic datasets using different metrics to assess topological and functional differences. Our experiments show that the proposed generative approach is superior to state-of-the-art approaches that only consider topology for vessel reconstruction and performs consistently well across different problem sizes and topologies.

摘要

本文描述了一种从部分不完整图像数据重建完整三维动脉树的新方法。我们利用一个具有生理动机的模拟框架,迭代生成人工但具有生理意义的脉管系统,以校正血管连通性。生成方法由一个简化的血管生成模型引导,同时考虑从图像数据中提取的拓扑和形态学证据,以形成功能上合适的树模型。我们使用不同的指标评估拓扑和功能差异,在四个合成数据集上评估了我们方法的有效性。我们的实验表明,所提出的生成方法优于仅考虑拓扑进行血管重建的现有方法,并且在不同的问题规模和拓扑结构上表现一致良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验