Suppr超能文献

使用物种建模工具识别用于减少毁林和森林退化所致排放及森林保护的毁林风险区域。

Identifying areas of deforestation risk for REDD+ using a species modeling tool.

作者信息

Aguilar-Amuchastegui Naikoa, Riveros Juan Carlos, Forrest Jessica L

机构信息

Forests and Climate Global Initiative, WWF-US, 1250 24th Street NW, Washington 20037, DC, USA.

WWF-Peru, Trinidad Moran 853, Lince 14, Lima, Peru.

出版信息

Carbon Balance Manag. 2014 Nov 29;9:10. doi: 10.1186/s13021-014-0010-5. eCollection 2014.

Abstract

BACKGROUND

To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation, countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area deforested and carbon emissions between 2000 and 2009 as the basis of the scenario.

RESULTS

We observed over 80,000 ha of forest cover lost from 2000-2009 (0.21% annual loss), representing over 39 million Mg CO2. The rate increased rapidly following the enhancement of the Inter Oceanic Highway in 2005. Accessibility and distance to previous deforestation were strong predictors of deforestation risk, while land use designation was less important. The model performed consistently well (AUC > 0.9), significantly better than random when we compared predicted deforestation risk to observed. If past deforestation rates continue, we estimate that 132,865 ha of forest could be lost by the year 2020, representing over 55 million Mg CO2.

CONCLUSIONS

Maxent provided a reliable method for identifying areas at high risk of deforestation and the major explanatory variables that could draw attention for mitigation action planning under REDD+. The tool is accessible, replicable and easy to use; all necessary for producing good risk estimates and adapt models after potential landscape change. We propose this approach for developing countries planning to meet requirements under REDD+.

摘要

背景

为实施“减少毁林和森林退化所致排放”(REDD+)机制,各国需要优先确定应对未来毁林二氧化碳排放的区域,找出制定缓解措施所围绕的毁林驱动因素,并对用于金融机制的碳进行量化和估值。每一项工作都面临着各自的方法挑战,而现有的相关方法和工具实施成本高昂,或者需要相当多的技术知识和技能。在此,我们提出一种利用称为最大熵建模(Maxent)的机器学习技术的方法,以识别在秘鲁马德雷德迪奥斯研究区域内,在历史毁林率持续的照常情景下,面临高毁林风险的区域。我们将毁林风险区域与碳密度值相联系,以估算未来的碳排放。我们将2000年至2009年期间的毁林面积和碳排放量进行了量化,作为该情景的基础。

结果

我们观察到2000年至2009年期间超过80000公顷的森林覆盖面积丧失(年损失率为0.21%),相当于超过3900万公吨二氧化碳。2005年跨洋公路升级后,毁林率迅速上升。可达性和与先前毁林区域的距离是毁林风险的有力预测指标,而土地用途指定的重要性较低。该模型表现一直良好(AUC>0.9),当我们将预测的毁林风险与观测值进行比较时,显著优于随机预测。如果过去的毁林率持续下去,我们估计到2020年可能会有132865公顷的森林丧失,相当于超过5500万公吨二氧化碳。

结论

Maxent为识别高毁林风险区域以及在REDD+下制定缓解行动计划时可能需要关注的主要解释变量提供了一种可靠方法。该工具易于获取、可复制且易于使用;对于生成良好的风险估计以及在潜在景观变化后调整模型而言,这些都是必不可少的。我们建议发展中国家采用这种方法来满足REDD+下的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c429/4257064/d0cff66d2ba3/s13021-014-0010-5-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验