Suppr超能文献

染色体带的演变:非编码DNA的分子生态学

Evolution of chromosome bands: molecular ecology of noncoding DNA.

作者信息

Holmquist G P

机构信息

Beckman Research Institute of the City of Hope, Department of Biology, Duarte, California 91010.

出版信息

J Mol Evol. 1989 Jun;28(6):469-86. doi: 10.1007/BF02602928.

Abstract

Giemsa dark bands, G-bands, are a derived chromatin character that evolved along the chromosomes of early chordates. They are facultative heterochromatin reflecting acquisition of a late replication mechanism to repress tissue-specific genes. Subsequently, R-bands, the primitive chromatin state, became directionally GC rich as evidenced by Q-banding of mammalian and avian chromosomes. Contrary to predictions from the neutral mutation theory, noncoding DNA is positionally constrained along the banding pattern with short interspersed repeats in R-bands and long interspersed repeats in G-bands. Chromosomes seem dynamically stable: the banding pattern and gene arrangement along several human and murine autosomes has remained constant for 100 million years, whereas much of the noncoding DNA, especially retroposons, has changed. Several coding sequence attributes and probably mutation rates are determined more by where a gene lives than by what it does. R-band exons in homeotherms but not G-band exons have directionally acquired GC-rich wobble bases and the corresponding codon usage: CpG islands in mammals are specific to R-band exons, exons not facultatively heterochromatinized, and are independent of the tissue expression pattern of the gene. The dynamic organization of noncoding DNA suggests a feedback loop that could influence codon usage and stabilize the chromosome's chromatin pattern: DNA sequences determine affinities of----proteins that together form----a chromatin that modulates----rate constants for DNA modification that determine----DNA sequences. Theories of hierarchical selection and molecular ecology show how selection can act on Darwinian units of noncoding DNA at the genome level thus creating positionally constrained DNA and contributing minimal genetic load at the individual level.

摘要

吉姆萨暗带(G带)是一种衍生的染色质特征,它沿着早期脊索动物的染色体进化而来。它们是兼性异染色质,反映了一种晚期复制机制的获得,用于抑制组织特异性基因。随后,R带这种原始的染色质状态在哺乳动物和鸟类染色体的Q带分析中显示出富含定向的GC。与中性突变理论的预测相反,非编码DNA沿着带型在位置上受到限制,R带中有短散在重复序列,G带中有长散在重复序列。染色体似乎具有动态稳定性:沿着几条人类和小鼠常染色体的带型模式和基因排列在一亿年里一直保持不变,而许多非编码DNA,尤其是逆转座子,已经发生了变化。几个编码序列属性以及可能的突变率更多地由基因所在的位置决定,而不是由基因的功能决定。恒温动物的R带外显子而非G带外显子定向获得了富含GC的摆动碱基以及相应的密码子使用情况:哺乳动物中的CpG岛特定于R带外显子,即那些未被兼性异染色质化的外显子,并且与基因的组织表达模式无关。非编码DNA的动态组织表明存在一个反馈环,它可能影响密码子使用并稳定染色体的染色质模式:DNA序列决定了蛋白质的亲和力,这些蛋白质共同形成一种染色质,该染色质调节DNA修饰的速率常数,而这些速率常数又决定了DNA序列。层次选择理论和分子生态学理论展示了选择如何在基因组水平上作用于非编码DNA的达尔文单位,从而产生位置受限的DNA,并在个体水平上贡献最小的遗传负荷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验