Suppr超能文献

通道视紫红质-1导电状态下内部水分子和半胱氨酸残基氢键强度的变化。

Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1.

作者信息

Lórenz-Fonfría Víctor A, Muders Vera, Schlesinger Ramona, Heberle Joachim

机构信息

Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany.

Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany.

出版信息

J Chem Phys. 2014 Dec 14;141(22):22D507. doi: 10.1063/1.4895796.

Abstract

Water plays an essential role in the structure and function of proteins, particularly in the less understood class of membrane proteins. As the first of its kind, channelrhodopsin is a light-gated cation channel and paved the way for the new and vibrant field of optogenetics, where nerve cells are activated by light. Still, the molecular mechanism of channelrhodopsin is not understood. Here, we applied time-resolved FT-IR difference spectroscopy to channelrhodopsin-1 from Chlamydomonas augustae. It is shown that the (conductive) P2(380) intermediate decays with τ ≈ 40 ms and 200 ms after pulsed excitation. The vibrational changes between the closed and the conductive states were analyzed in the X-H stretching region (X = O, S, N), comprising vibrational changes of water molecules, sulfhydryl groups of cysteine side chains and changes of the amide A of the protein backbone. The O-H stretching vibrations of "dangling" water molecules were detected in two different states of the protein using H2 (18)O exchange. Uncoupling experiments with a 1:1 mixture of H2O:D2O provided the natural uncoupled frequencies of the four O-H (and O-D) stretches of these water molecules, each with a very weakly hydrogen-bonded O-H group (3639 and 3628 cm(-1)) and with the other O-H group medium (3440 cm(-1)) to moderately strongly (3300 cm(-1)) hydrogen-bonded. Changes in amide A and thiol vibrations report on global and local changes, respectively, associated with the formation of the conductive state. Future studies will aim at assigning the respective cysteine group(s) and at localizing the "dangling" water molecules within the protein, providing a better understanding of their functional relevance in CaChR1.

摘要

水在蛋白质的结构和功能中起着至关重要的作用,尤其是在人们了解较少的膜蛋白类别中。作为同类中的首个成员,通道视紫红质是一种光门控阳离子通道,为光遗传学这一崭新且充满活力的领域铺平了道路,在该领域中神经细胞可被光激活。然而,通道视紫红质的分子机制仍不为人所知。在此,我们将时间分辨傅里叶变换红外差光谱应用于来自奥古斯塔衣藻的通道视紫红质-1。结果表明,在脉冲激发后,(导电的)P2(380)中间体以τ≈40毫秒和200毫秒的时间常数衰减。在X-H伸缩区域(X = O、S、N)分析了关闭状态和导电状态之间的振动变化,其中包括水分子的振动变化、半胱氨酸侧链的巯基以及蛋白质主链酰胺A的变化。利用H2(18)O交换在蛋白质的两种不同状态下检测到了“游离”水分子的O-H伸缩振动。用H2O:D2O的1:1混合物进行的解偶联实验提供了这些水分子的四个O-H(和O-D)伸缩振动的天然解偶联频率,每个水分子都有一个氢键非常弱的O-H基团(3639和3628厘米-1)以及另一个O-H基团中等程度(3440厘米-1)至中等强度(3300厘米-1)氢键结合。酰胺A和硫醇振动的变化分别反映了与导电状态形成相关的全局和局部变化。未来的研究旨在确定各自的半胱氨酸基团,并在蛋白质中定位“游离”水分子,以便更好地理解它们在CaChR1中的功能相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验