Suppr超能文献

磁共振成像(MRI)采集过程中的头部运动降低了灰质体积和厚度的估计值。

Head motion during MRI acquisition reduces gray matter volume and thickness estimates.

作者信息

Reuter Martin, Tisdall M Dylan, Qureshi Abid, Buckner Randy L, van der Kouwe André J W, Fischl Bruce

机构信息

Massachusetts General Hospital, Department of Neurology, 55 Fruit Street, Boston, MA 02114, USA; Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA; Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.

Massachusetts General Hospital, Department of Radiology, A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.

出版信息

Neuroimage. 2015 Feb 15;107:107-115. doi: 10.1016/j.neuroimage.2014.12.006. Epub 2014 Dec 10.

Abstract

Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process.

摘要

源自磁共振成像(MRI)数据的成像生物标志物用于量化正常发育、疾病以及疾病修饰疗法的效果。然而,图像采集过程中的运动引入了图像伪影,进而影响衍生标志物。系统性影响可能会带来问题,因为诸如年龄、疾病和治疗等感兴趣的因素通常与结构变化以及扫描仪中的头部运动量相关,这会混淆区分生物学因素与伪影的能力。在此,我们使用几种流行的图像分析软件包(FreeSurfer 5.3、VBM8 SPM和FSL Siena 5.0.7)评估图像采集过程中头部运动对人类大脑结构形态测量估计的影响。在12名健康志愿者执行不同运动任务(包括两次静止扫描)时,采集了会话内重复的T1加权MRI图像。我们发现,皮质灰质的体积和厚度估计会受到头部运动的影响,受试者运动平均表观体积损失约为0.7%/毫米/分钟。不同区域的影响有所不同,在排除未通过严格质量检查的扫描后,影响仍然显著。鉴于这些结果,对于已报道的运动障碍或其他运动倾向增加的病症的形态测量影响进行解释时,可能需要重新审视:在未控制头部运动的情况下,影响可能被高估。此外,使用催眠、镇静、安定或神经肌肉阻滞剂物质的药物研究可能包含假性“效果”,即萎缩或脑生长减少,仅仅是因为这些物质影响了运动,而不是疾病或治疗过程的真实效果。

相似文献

1
Head motion during MRI acquisition reduces gray matter volume and thickness estimates.
Neuroimage. 2015 Feb 15;107:107-115. doi: 10.1016/j.neuroimage.2014.12.006. Epub 2014 Dec 10.
2
Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion.
Hum Brain Mapp. 2017 Jan;38(1):472-492. doi: 10.1002/hbm.23397. Epub 2016 Sep 16.
3
Estimation of in-scanner head pose changes during structural MRI using a convolutional neural network trained on eye tracker video.
Magn Reson Imaging. 2021 Sep;81:101-108. doi: 10.1016/j.mri.2021.06.010. Epub 2021 Jun 18.
6
Method for retrospective estimation of natural head movement during structural MRI.
J Magn Reson Imaging. 2018 Oct;48(4):927-937. doi: 10.1002/jmri.25959. Epub 2018 Feb 2.
7
Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI.
Hum Brain Mapp. 2016 Jul;37(7):2385-97. doi: 10.1002/hbm.23180. Epub 2016 Mar 23.
9
Less head motion during MRI under task than resting-state conditions.
Neuroimage. 2017 Feb 15;147:111-120. doi: 10.1016/j.neuroimage.2016.12.002. Epub 2016 Dec 2.

引用本文的文献

2
Precision brain morphometry using cluster scanning.
Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00175. eCollection 2024.
3
BrainQCNet: A Deep Learning attention-based model for the automated detection of artifacts in brain structural MRI scans.
Imaging Neurosci (Camb). 2024 Oct 1;2. doi: 10.1162/imag_a_00300. eCollection 2024.
4
Investigating the impact of motion in the scanner on brain age predictions.
Imaging Neurosci (Camb). 2024 Feb 5;2. doi: 10.1162/imag_a_00079. eCollection 2024.
5
Cortical changes during the learning of sequences of simultaneous finger presses.
Imaging Neurosci (Camb). 2023 Sep 12;1. doi: 10.1162/imag_a_00016. eCollection 2023.
6
Real-world brain imaging in a population-based cohort enables accurate markers for dementia.
Alzheimers Dement. 2025 Jul;21(7):e70227. doi: 10.1002/alz.70227.
7
Addressing artifactual bias in large, automated MRI analyses of brain development.
Nat Neurosci. 2025 Jul 1. doi: 10.1038/s41593-025-01990-7.
8
Cortical thickness in brain imaging studies using FreeSurfer and CAT12: A matter of reproducibility.
Neuroimage Rep. 2022 Oct 7;2(4):100137. doi: 10.1016/j.ynirp.2022.100137. eCollection 2022 Dec.
9
Longitudinal associations between birth-to-six cortical growth and childhood neurocognitive function.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2418176122. doi: 10.1073/pnas.2418176122. Epub 2025 May 27.
10
Verifying the concordance between motion corrected and conventional MPRAGE for pediatric morphometric analysis.
Front Neurosci. 2025 May 9;19:1534924. doi: 10.3389/fnins.2025.1534924. eCollection 2025.

本文引用的文献

1
Neurobiological basis of head motion in brain imaging.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6058-62. doi: 10.1073/pnas.1317424111. Epub 2014 Apr 7.
2
Spurious group differences due to head motion in a diffusion MRI study.
Neuroimage. 2014 Mar;88:79-90. doi: 10.1016/j.neuroimage.2013.11.027. Epub 2013 Nov 21.
3
Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data.
Neuroimage. 2013 Nov 1;81:358-370. doi: 10.1016/j.neuroimage.2013.05.049. Epub 2013 May 20.
4
Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models.
Neuroimage. 2013 Feb 1;66:249-60. doi: 10.1016/j.neuroimage.2012.10.065. Epub 2012 Oct 30.
5
Within-subject template estimation for unbiased longitudinal image analysis.
Neuroimage. 2012 Jul 16;61(4):1402-18. doi: 10.1016/j.neuroimage.2012.02.084. Epub 2012 Mar 10.
6
Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth.
Neuroimage. 2012 Mar;60(1):623-32. doi: 10.1016/j.neuroimage.2011.12.063. Epub 2012 Jan 2.
7
Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI.
Magn Reson Med. 2012 Aug;68(2):389-99. doi: 10.1002/mrm.23228. Epub 2011 Dec 28.
8
Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
Neuroimage. 2012 Feb 1;59(3):2142-54. doi: 10.1016/j.neuroimage.2011.10.018. Epub 2011 Oct 14.
9
The influence of head motion on intrinsic functional connectivity MRI.
Neuroimage. 2012 Jan 2;59(1):431-8. doi: 10.1016/j.neuroimage.2011.07.044. Epub 2011 Jul 23.
10
A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study.
Mov Disord. 2011 Aug 1;26(9):1691-7. doi: 10.1002/mds.23762. Epub 2011 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验