Suppr超能文献

使用聚类扫描的精确脑形态测量学。

Precision brain morphometry using cluster scanning.

作者信息

Elliott Maxwell L, Nielsen Jared A, Hanford Lindsay C, Hamadeh Aya, Hilbert Tom, Kober Tobias, Dickerson Bradford C, Hyman Bradley T, Mair Ross W, Eldaief Mark C, Buckner Randy L

机构信息

Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, United States.

Department of Psychology, Neuroscience Center, Brigham Young University, Provo, UT, United States.

出版信息

Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00175. eCollection 2024.

Abstract

Measurement error limits the statistical power to detect group differences and longitudinal change in structural MRI morphometric measures (e.g., hippocampal volume, prefrontal cortical thickness). Recent advances in scan acceleration enable extremely fast T-weighted scans (~1 minute) that achieve morphometric errors that are close to the errors in longer traditional scans. As acceleration allows multiple scans to be acquired in rapid succession, it becomes possible to pool estimates to increase measurement precision, a strategy known as "cluster scanning." Here, we explored brain morphometry using cluster scanning in a test-retest study of 40 individuals (12 younger adults, 18 cognitively unimpaired older adults, and 10 adults diagnosed with mild cognitive impairment or Alzheimer's Dementia). Morphometric errors from a single compressed sensing (CS) 1.0 mm scan (CS) were, on average, 12% larger than a traditional scan using the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. Pooled estimates from four clustered CS acquisitions led to errors that were 34% smaller than ADNI despite having a shorter total acquisition time. Given a fixed amount of time, a gain in measurement precision can thus be achieved by acquiring multiple rapid scans instead of a single traditional scan. Errors were further reduced when estimates were pooled from eight CS scans (51% smaller than ADNI). Neither pooling across a break nor pooling across multiple scans of different spatial resolutions boosted this benefit. We discuss the potential of cluster scanning to improve morphometric precision, boost statistical power, and produce more sensitive disease progression biomarkers.

摘要

测量误差限制了检测结构磁共振成像形态测量指标(如海马体积、前额叶皮质厚度)组间差异和纵向变化的统计功效。扫描加速技术的最新进展使得能够进行极快速的T加权扫描(约1分钟),其形态测量误差接近较长时间传统扫描的误差。由于加速允许快速连续采集多次扫描,因此可以汇总估计值以提高测量精度,这一策略称为“集群扫描”。在此,我们在一项对40名个体(12名年轻成年人、18名认知未受损的老年人以及10名被诊断为轻度认知障碍或阿尔茨海默病痴呆的成年人)的重测研究中,使用集群扫描探索脑形态测量学。单次压缩感知(CS)1.0毫米扫描(CS)的形态测量误差平均比使用阿尔茨海默病神经成像计划(ADNI)协议的传统扫描大12%。尽管总采集时间较短,但来自四次集群CS采集的汇总估计值导致的误差比ADNI小34%。在给定固定时间量的情况下,通过采集多次快速扫描而非单次传统扫描,可实现测量精度的提高。当从八次CS扫描汇总估计值时,误差进一步降低(比ADNI小51%)。跨间隔汇总或跨不同空间分辨率的多次扫描汇总均未增强这一益处。我们讨论了集群扫描在提高形态测量精度、增强统计功效以及产生更敏感的疾病进展生物标志物方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef3/12247576/cf0e0ac853a5/imag_a_00175_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验